【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長(zhǎng).
【答案】
(1)證明:∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切線.
(2)證明:連接AC,如圖1所示:
∵OF⊥BC,
∴ ,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴ ,
∴CE2=EHEA;
(3)解:連接BE,如圖2所示:
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵⊙O的半徑為5,sin∠BAE= ,
∴AB=10,BE=ABsin∠BAE=10× =6,
∴EA= = =8,
∵ ,
∴BE=CE=6,
∵CE2=EHEA,
∴EH= = ,
在Rt△BEH中,BH= = = .
【解析】(1)由圓周角定理和已知條件,證出∠ODB=∠ABC,再證出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切線;(2)連接AC,由垂徑定理得出弧BE=弧CE,得出∠CAE=∠ECB,進(jìn)而證明出△CEH∽△AEC,得出對(duì)應(yīng)邊成比例,即可得出結(jié)論;(3)連接BE,由圓周角定理得出∠AEB=90°,由三角函數(shù)求出BE的長(zhǎng),再根據(jù)勾股定理求出EA,得出BE=CE=6,由(2)的結(jié)論求出EH,最后根據(jù)勾股定理求出BH即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC=EC,∠BCE=∠ACD,如果只添加一個(gè)條件,使△ABC ≌ △DEC,則添加的條件不能為( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若AB=3,BC=4,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b、c滿足(b-3)2+|c+4|=0,且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù).
(1)點(diǎn)A表示的數(shù)為______,點(diǎn)B表示的數(shù)為______,點(diǎn)C表示的數(shù)為______;
(2)若動(dòng)點(diǎn)P從C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長(zhǎng)度,運(yùn)動(dòng)幾秒后,點(diǎn)P到點(diǎn)B為5個(gè)單位長(zhǎng)度?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A、B、C三點(diǎn)的距離之和等于13,請(qǐng)寫出所有點(diǎn)M對(duì)應(yīng)的數(shù),并寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂州某個(gè)體商戶購(gòu)進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場(chǎng)調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣出160個(gè),若銷售單價(jià)每個(gè)降低2元,則每周可多賣出20個(gè).設(shè)銷售價(jià)格每個(gè)降低x元(x為偶數(shù)),每周銷售量為y個(gè).
(1)直接寫出銷售量y個(gè)與降價(jià)x元之間的函數(shù)關(guān)系式;
(2)設(shè)商戶每周獲得的利潤(rùn)為W元,當(dāng)銷售單價(jià)定為多少元時(shí),每周銷售利潤(rùn)最大,最大利潤(rùn)是多少元?
(3)若商戶計(jì)劃下周利潤(rùn)不低于5200元的情況下,他至少要準(zhǔn)備多少元進(jìn)貨成本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了增強(qiáng)居民的節(jié)水意識(shí),某市自來水公司對(duì)居民用水采用以戶為單位分段計(jì)費(fèi)辦法收費(fèi).即一個(gè)月用水10 t以內(nèi)(包括10 t)的用戶,每噸收水費(fèi)a元;一個(gè)月用水超過10 t的用戶,10 t水仍按每噸a元收費(fèi),超過10 t的部分,按每噸b(b>a)元收費(fèi).設(shè)一戶居民月用水x t,應(yīng)交水費(fèi)y元,y與x之間的函數(shù)關(guān)系如圖所示.
(1)求a的值;某戶居民上月用水8 t,應(yīng)交水費(fèi)多少元?
(2)求b的值,并寫出當(dāng)x>10時(shí),y與x之間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是某汽車行駛的路程S(km)與時(shí)間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車在中途停了多長(zhǎng)時(shí)間?
(3)當(dāng)16≤t≤30時(shí),求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為統(tǒng)籌安排大課間體育活動(dòng),在各班隨機(jī)選取了一部分學(xué)生,分成四類活動(dòng):“籃球”、“羽毛球”、“乒乓球”、“其他”進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計(jì)圖.
(1)學(xué)校采用的調(diào)查方式是;學(xué)校共選取了名學(xué)生;
(2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):條形統(tǒng)計(jì)圖中羽毛球人、乒乓球人、其他人、扇形統(tǒng)計(jì)圖中其他 %;
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)喜歡“乒乓球”的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com