【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CDE=55°.如圖,則∠EAB的度數(shù)為_________
【答案】35°
【解析】
過(guò)點(diǎn)E作EF⊥AD于F,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得CE=EF,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上可得AE是∠BAD的平分線,然后求出∠AEB,再根據(jù)直角三角形兩銳角互余求解即可.
過(guò)點(diǎn)E作EF⊥AD于F.
∵DE平分∠ADC,∴CE=EF.
∵E是BC的中點(diǎn),∴CE=BE,∴BE=EF,∴AE是∠BAD的平分線,∴∠EAB=∠FAE.
∵∠B=∠C=90°,∴∠CDA+∠DAB=180°,∴2∠CDE+2∠EAB=180°,∴∠CDE+∠EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.
故答案為:35°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于E,F兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)證明:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲柄連桿裝置是很多機(jī)械上不可缺少的,曲柄OA繞O點(diǎn)圓周運(yùn)動(dòng),連桿AP拉動(dòng)活塞作往復(fù)運(yùn)動(dòng).當(dāng)曲柄的A旋轉(zhuǎn)到最右邊時(shí),如圖(1),OP長(zhǎng)為8cm;當(dāng)曲柄的A旋轉(zhuǎn)到最左邊時(shí),如圖(2)OP長(zhǎng)為18cm.
(1)求曲柄OA和連桿AP分別有多長(zhǎng);
(2)求:OA⊥OP時(shí),如圖(3),OP的長(zhǎng)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快城鄉(xiāng)對(duì)接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來(lái)從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于點(diǎn)A(3,0)、B(0,4),點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求直線AB的表達(dá)式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)y軸的正半軸上是否存在一點(diǎn)P,使得S△PAB=S△OCD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們不妨約定:對(duì)角線互相垂直的凸四邊形叫做“十字形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“十字形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “十字形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針方向排列的四個(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,當(dāng)6≤AC2+BD2≤7時(shí),求OE的取值范圍;
(3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“十字形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.求同時(shí)滿足下列三個(gè)條件的拋物線的解析式;
①= ;②= ;③“十字形”ABCD的周長(zhǎng)為12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來(lái)水收貴的價(jià)目表如下(注:水費(fèi)按月份結(jié)算,表示立方米)
價(jià)目表 | |
每月用水量 | 價(jià)格 |
不超過(guò)的部分 | |
超出不超出的部分 | |
超出的部分 |
某戶居民1月份和2月份的用水量分別為和,則應(yīng)收水費(fèi)分別是 元和 元
若該戶居民月份用水量(其中),則應(yīng)收水費(fèi)多少元? (用含的式子表示,并化簡(jiǎn))
若該戶居民兩個(gè)月共用水 (月份用水量超過(guò)月份),設(shè)月份用水,求該戶居民兩個(gè)月共交水費(fèi)多少元? (用含 的式子表示,并化簡(jiǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別是等邊三角形ABC的邊BC、AC上的點(diǎn),連接AD、BE交于點(diǎn)O,且△ABD≌△BCE.
(1)若AB=3,AE=2,則BD= ;
(2)若∠CBE=15°,則∠AOE= ;
(3)若∠BAD=a,猜想∠AOE的度數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.
(1)若∠AOC=∠AOB,則OC的方向是 ;
(2)OD是OB的反向延長(zhǎng)線,OD的方向是 ;
(3)∠BOD可看作是OB繞點(diǎn)O逆時(shí)針方向至OD,作∠BOD的平分線OE,OE的方向是 ;
(4)在(1)、(2)、(3)的條件下,∠COE= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com