【題目】晚上,小亮走在大街上發(fā)現(xiàn):當他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個影子成一直線時,自己右邊的影子長為3m,左邊的影子長為1.5m,又知自己身高1.80m,兩盞路燈的高相同,兩盞路燈之間的距離為12m,則路燈的高為(  )

A. 6.6m B. 6.7m C. 6.8m D. 6.9m

【答案】A

【解析】

首先根據(jù)已知條件求證出△FHG∽△FDE,△CHG∽△CBA,然后根據(jù)相似三角形的性質(zhì)求得兩個相似三角形的相似比,進而求出路燈DE的高度.

設(shè)小亮離右邊的路燈為xm,則離左邊的路燈為(12xm,再設(shè)路燈的高為hm,又易證△FHG∽△FDE,△CHG∽△CBA,則,即1.8h=1.5:(1.5+x), 1.8h=3:(3+12x

解得:x=4,h=6.6

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣ax+1=0有兩個相等的實數(shù)根,且該實數(shù)根也是關(guān)于x的方程的根,則ba的值為( 。

A. B. C. 9 D. ﹣9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級生物興趣小組租兩艘快艇去微山湖生物考察,他們從同一碼頭出發(fā),第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此時第一艘快艇不動,第二艘快艇向第一艘快艇靠攏,那么第二艘快艇航行的方向和距離分別是(  )

A. 南偏東,千米 B. 北偏西千米

C. 南偏東,100千米 D. 北偏西,100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,-4),連接AOAO=5,sinAOC=

1)求反比例函數(shù)的解析式;

2)連接OB,求AOB的面積;

(3)請直接寫出當xm時,y2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是(  。

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=6-x與雙曲線y=(x>0)的圖象相交于點A,B,設(shè)點A的坐標為(m,n),那么以m為長、n為寬的矩形的面積和周長分別為(  )

A. 4,6 B. 4,12 C. 8,6 D. 8,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個交點,AC⊥x軸于C.

(1)求出k,bm的值.

(2)根據(jù)圖象直接回答:在第二象限內(nèi),當y1>y2時,x的取值范圍是 ________.

(3)P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案