【題目】如圖,已知AD∥BC,AB⊥BC,AB=BC=4,P為線段AB上一動(dòng)點(diǎn).將△BPC沿PC翻折至△EPC,延長(zhǎng)CE交射線AD于點(diǎn)D
(1)如圖1,當(dāng)P為AB的中點(diǎn)時(shí),求出AD的長(zhǎng)
(2)如圖2,延長(zhǎng)PE交AD于點(diǎn)F,連接CF,求證:∠PCF=45°
(3)如圖3,∠MON=45°,在∠MON內(nèi)部有一點(diǎn)Q,且OQ=8,過點(diǎn)Q作OQ的垂線GH分別交OM、ON于G、H兩點(diǎn).設(shè)QG=x,QH=y,直接寫出y關(guān)于x的函數(shù)解析式
【答案】(1)1;(2)見解析;(3)
【解析】
(1)如圖1.根據(jù)平行線的性質(zhì)得到∠A=∠B=90°,由折疊的性質(zhì)得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根據(jù)全等三角形的性質(zhì)得到∠APD=∠EPD,推出 于是得到結(jié)論;
(2)如圖2.過C作CG⊥AF交AF的延長(zhǎng)線于G,推出四邊形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根據(jù)折疊的性質(zhì)得到∠CEP=∠B=90°,BC=CE,∠BCP=∠ECP, 根據(jù)全等三角形的性質(zhì)即可得到結(jié)論:
(3)如圖3,將△OQG沿OM翻折至△OPG,將△OQH沿ON翻折至△ORH,延長(zhǎng)PG, RH交于S,推出四邊形PORS是正方形,根據(jù)勾股定理即可得到結(jié)論.
解:(1)如圖1,連結(jié),
∵AD//BC. AB⊥BC,
∴∠A=∠B=90°
∵將△BPC沿PC翻折至△EPC,
∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,
∴∠DEP=90°
∵當(dāng)P為AB的中點(diǎn),
∴AP=BP
∴PA=PE
∵PD=PD
∴,
∴
作于,設(shè),則,
由勾股定理得,
解得,
∴
圖1
(2)如圖2,作交延長(zhǎng)線于,易證四邊形為正方形
∵∠A=∠B=∠G=90°,
∴四邊形ABCG是矩形,
∵AB=BC,
∴矩形ABCG是正方形,
∴CG=CB.
∵將△BPC沿PC翻折至△EPC,
∴∠ FED=90°,CG=CE,
又∵CF=CF
∴,
∴∠ECF=∠GCF,
∴∠BCP+∠GCF=∠PCE+∠FCE=45°
∴∠PCF=45°;
圖2/p>
(3)如圖3.將△OQG沿OM翻折至OOPG.將△OQH沿ON翻折至△ORH.延長(zhǎng)PG, RH交于S,則∠POG=∠QOG.∠ROH=∠QOH, OP=OQ=OR=8,PG=QG=x,QH=RH=y,
∴ ∠POR=2∠MON=90",
∵GH⊥OQ.
∴∠OQG=∠OQH=90° .
∴∠P=∠R=90° ,
∴四邊形PORS是正方形。
∴PS=RS=8,∠S=90°,
∴.GS=8-x,HS=8-y.
∴ .
∴
∴
圖3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識(shí)是用來為人類服務(wù)的,我們應(yīng)該把它們用于有意義的方面.下面就兩個(gè)情景請(qǐng)你作出評(píng)判.
情景一:從教室到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,這是為什么呢?試用所學(xué)數(shù)學(xué)知識(shí)來說明這個(gè)問題.
情景二:A、B是河流l兩旁的兩個(gè)村莊,現(xiàn)要在河邊修一個(gè)抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請(qǐng)?jiān)趫D中表示出抽水站點(diǎn)P的位置,并說明你的理由:
你贊同以上哪種做法?你認(rèn)為應(yīng)用數(shù)學(xué)知識(shí)為人類服務(wù)時(shí)應(yīng)注意什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),連接DE.過點(diǎn)A作AF⊥DE,垂足為F,⊙O經(jīng)過點(diǎn)C、D、F,與AD相交于點(diǎn)G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長(zhǎng)為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來表示,已知OA=8米,距離O點(diǎn)2米處的棚高BC為米.
(1)求該拋物線的解析式;
(2)若借助橫梁DE(DE∥OA)建一個(gè)門,要求門的高度為1.5米,求橫梁DE的長(zhǎng)度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛準(zhǔn)備用一段長(zhǎng)50米的籬笆圍成一個(gè)三角形形狀的場(chǎng)地,用于飼養(yǎng)雞,已知第一條邊長(zhǎng)為m米,由于條件限制第二條邊長(zhǎng)只能比第一條邊長(zhǎng)的3倍少2米.
(1)用含m的式子表示第三條邊長(zhǎng);
(2)第一條邊長(zhǎng)能否為10米?為什么?
(3)若第一條邊長(zhǎng)最短,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:PA、PB、CD分別切⊙O于A、B、E三點(diǎn),PA=6.求:
(1)△PCD的周長(zhǎng);
(2)若∠P=50°,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為Rt△ABC的直角邊AC上一點(diǎn),以O(shè)C為半徑的圓與斜邊AB相切于點(diǎn)D,P是弧CD上任意一點(diǎn),過點(diǎn)P作⊙O的切線,交BC于點(diǎn)M,交AB于點(diǎn)N,已知AB=5,AC=4.
(1)△BMN的周長(zhǎng)等于多少;
(2)⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列五條結(jié)論: ①abc<0;②4ac-b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠-1).其中正確的結(jié)論是_________(把所有正確的結(jié)論的序號(hào)都填寫在橫線上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com