【題目】在平面直角坐標系中,點的坐標為,點的坐標為,且是方程的解.
(1)請求出A、B兩點坐標
(2)點在第一象限內(nèi),軸,將線段AB進行適當?shù)钠揭频玫骄段DC,點A的對應(yīng)點為D,點B的對應(yīng)點為C,連接AD,若的面積為12,連接OD,P為y軸上一動點,若使,求此時點P的坐標.
【答案】(1)A(0,3),B(2,-1);(2)P(0,-3)或(0,9).
【解析】分析:(1)、根據(jù)一元一次方程求出m的值,從而得出點A和點B的坐標;(2)、首先根據(jù)平移的法則得出點D到AC的距離,然后根據(jù)面積求出AC的長度,從而得出△AOD的面積,最后根據(jù)面積求出點P的坐標.
詳解:(1)、解方程得:m=-1,
所以點A坐標為(0,3),點B坐標為(2,-1);
(2)、∵AC∥x軸, ∴C點的縱坐標為3, ∵點B的對應(yīng)點為點C, 而B(2,-1),
∴點B向上平移了4個單位, ∴點A向上平移了4個單位, ∴點D到AC的距離為4,
∵×4×AC=12, ∴AC=6;∵AC∥x軸, ∴C點坐標為(6,3),
∴點B向上平移4個單位,再向右平移4個單位得到點C,
∴點A向上平移4個單位,再向右平移4個單位得到點D,即D(4,7),
∴S△AOD=×3×4=6, 設(shè)P點坐標為(0,t),則|t-3|2=6,解得t=-3或t=9,
∴點P的坐標為(0,-3)或(0,9).
科目:初中數(shù)學 來源: 題型:
【題目】某港口位于東西方向的海岸線上.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口 小時后相距30海里.如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=35°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板按如圖所示疊放在一起,若固定,將繞著公共頂點,按順時針方向旋轉(zhuǎn)度,當的一邊與的某一邊平行時,相應(yīng)的旋轉(zhuǎn)角的度數(shù)為_________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如圖1可以得到(a+b)2=a2+2ab+b2,請解答下列問題:
(1)寫出圖2中所表示的數(shù)學等式 。
(2)根據(jù)整式乘法的運算法則,通過計算驗證上述等式。
(3)利用(1)中得到的結(jié)論,解決下面的問題:
若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(4)小明同學用圖3中x張邊長為a的正方形,y張邊長為b的正方形z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+7b)(9a+4b)長方形,則x+y+z= 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對三種國慶活動方案的意見,對該校學生進行了一次抽樣調(diào)查(被調(diào)查學生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了名學生;扇形統(tǒng)計圖中方案1所對應(yīng)的圓心角的度數(shù)為度;
(2)請把條形統(tǒng)計圖補充完整;
(3)已知該校有1000名學生,試估計該校贊成方案1的學生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com