【題目】已知一次函數(shù)y=kx+b的圖象與y=x-1的圖象平行,且經(jīng)過點(26)

(1)求一次函數(shù)y=kx+b的表達式.

(2)求這個一次函數(shù)y=kx+b與坐標軸的兩個交點坐標,并在直角坐標系中畫出這個函數(shù)的圖象.

【答案】(1)一次函數(shù)表達式為:y=x+4;(2)x軸交點坐標是(-4,0),與y軸交點分別是(0,4),畫圖象見解析.

【解析】

1)由兩直線平行即可得出k值,再由一次函數(shù)圖象上點的坐標特征即可得出b的值,此題得解;

2)將x=0y=0分別代入一次函數(shù)解析中求出y、x值即可得出交點坐標,再在平面直角坐標系中畫出圖象即可.

(1)y=kx+b的圖象與y=x-1的圖象平行

k=1

y=x+b

(2,6)代入得:2+b=6, b=4

∴此一次函數(shù)表達式為:y=x+4

(2)y=x+4中,令y=0,則x+4=0,x= -4,得圖象與x軸交點坐標是(-4,0)

x=0,則y=4,得圖象與y軸交點分別是(0,4)

在平面直角坐標系中畫出圖象如圖所示,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AM=AN.

(1)求證:RtABMRtAND

(2)線段MN與線段AD相交于T,若AT=,的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題呈現(xiàn):阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.


證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG
∵M是的中點,
∴MA=MC
……
請按照上面的證明思路,寫出該證明的剩余部分;
實踐應用:
(1)如圖3,已知△ABC內接于⊙O,BC>AB>AC,D是的中點,依據(jù)阿基米德折弦定理可得圖中某三條線段的等量關系為BE=CE+ACBE=CE+AC;
(2)如圖4,已知等腰△ABC內接于⊙O,AB=AC,D為上一點,連接DB,∠ACD=45°,AE⊥CD于點E,△BCD的周長為4+2,BC=2,請求出AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)a1,a2a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2a2+2,a3+2的平均數(shù)和方差分別是( 。

A. 43B. 6,3C. 3,4D. 6,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.

(1)寫出A,C的坐標;

(2)圖中A與C的坐標之間的關系是什么?

(3)如果三角形AOB中任意一點M的坐標為(x,y),那么它的對應點N的坐標是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax+bx+4x軸交于點A(-3,0)和B(2,0),與y軸交于點C.

(1)求拋物線的解析式;

(2)如圖1,若點DCB的中點,將線段DB繞點D旋轉,點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;

(3)如圖2,若點D為直線BC或直線AC上的一點,Ex軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點ECD的中點,連接BE并延長交AD延長線于點F

1)求證:點DAF的中點;

2)若AB=2BC,連接AE,試判斷AEBF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,C、P上兩點,AB13AC5,

1)如圖(1),若點P的中點,求PA的長;

2)如圖(2),若點P的中點,求PA得長 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.

1)求每張門票原定的票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

同步練習冊答案