【題目】圖1、圖2是兩張形狀大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB、EF的端點均在小正方形的頂點上.
(1)如圖1,作出以AB為對角線的正方形并直接寫出正方形的周長;
(2)如圖2,以線段EF為一邊作出等腰△EFG(點G在小正方形頂點處)且頂角為鈍角,并使其面積等于4.
科目:初中數(shù)學 來源: 題型:
【題目】某市規(guī)定了每月用水18立方米以內(含18立方米)和用水18立方米以上兩種不同的收費標準.該市的用戶每月應交水費y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.
(1)若某月用水量為18立方米,則應交水費多少元?
(2)當用水18立方米以上時,每立方米應交水費多少元?
(3)若小敏家某月交水費81元,則這個月用水量為多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB為⊙O的直徑,BM為⊙O的切線,點C為射線BM上一點,連接AC交⊙O于點D,點E為BC上一點.連接AE交半圓于F.
(1)如圖1,若AE平分∠BAC,求證:∠DBF=∠CBF;
(2)如圖2,過點D作⊙O的切線交BM于N,若DN⊥BM,求證:△ABC為等腰直角三角形;
(3)在(2)的條件下,如圖3,延長BF交AC于G,點H為AB上一點,且BH=2BE,過點H作AE的垂線交AC于P,連接OG交DN于K,若AP=CG,EF=1,求GK的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解題:定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么形如a+bi(a,b為實數(shù))的數(shù)就叫做復數(shù),a叫這個復數(shù)的實部,b叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.例如計算:(2+i)+(3-4i)=5-3i.
(1)填空:i3=_____,i4="_______";
(2)計算:①;②;
(3)若兩個復數(shù)相等,則它們的實部和虛部必須分別相等,完成下列問題:
已知:(x+y)+3i=(1-x)-yi,(x,y為實數(shù)),求x,y的值.
(4)試一試:請利用以前學習的有關知識將化簡成a+bi的形式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校園文學社為了解本校學生對本社一種報紙四個版面的喜歡情況,隨機抽取部分學生做了一次問卷調查,要求學生選出自己喜歡的一個版面,將調查數(shù)據(jù)進行了整理、繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)第一版=____%,“第四版”對應扇形的圓心角為________°;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有1200名學生,請你估計全校學生中最喜歡“第三版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,過對角線BD上點P作直線EF,GH分別平行于AB,BC,那么圖中共有( )對面積相等平行四邊形.
A. 1對B. 2對C. 3對D. 4對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作⊙O切線EF交BA的延長線于F.
(1)如圖1,求證:EF∥AC;
(2)如圖2,OP⊥AO交BE于點P,交FE的延長線于點M.求證:△PME是等腰三角形;
(3)如圖3,在(2)的條件下:CG⊥AB于H點,交⊙O于G點,交AC于Q點,如圖2,若sinF= ,EQ=5,求PM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】核桃和棗是我省著名的農(nóng)特產(chǎn),它們營養(yǎng)豐富,有益人體健康,深受老百姓喜愛。某超市從農(nóng)貿批發(fā)市場批發(fā)核桃和棗進行零售,批發(fā)價和零售價格如下表所示:
名稱 | 核桃 | 棗 |
批發(fā)價(元/) | 12 | 9 |
零售價(元/) | 18 | 12 |
請解答下列問題.
(1)第一天,該超市從批發(fā)市場批發(fā)核桃和棗共350,用去了3600元錢,求當天核桃和棗各批發(fā)多少kg?
(2)第二天,該超市用3600元錢仍然批發(fā)核桃和棗(批發(fā)價和零售價不變),要想將第二天批發(fā)的核桃和棗全部售完后,所獲利潤不低于40%,則該超市第二天至少批發(fā)核桃多少kg?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知多項式3m3n22mn32中,四次項的系數(shù)為a,多項式的次數(shù)為b,常數(shù)項為c,且4b、10c3、(a+b)2bc的值分別是點A、B、C在數(shù)軸上對應的數(shù),點P從原點O出發(fā),沿OC方向以1單位/s的速度勻速運動,點Q從點C出發(fā)在線段CO上向點O勻速運動(點P、Q分別運動到點C、O時停止運動),兩點同時出發(fā).
(1)分別求4b、10c3、(a+b)2bc的值;
(2)若點Q運動速度為3單位/s,經(jīng)過多長時間P、Q兩點相距70;
(3)當點P運動到線段AB上時,分別取OP和AB的中點E、F,試問的值是否變化,若變化,求出其范圍:若不變,求出其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com