【題目】如圖所示,折疊長方形(四個角都是直角)的一邊AD使點D落在BC邊的點F處,已知AB=DC=8cmAD=BC=10cm,

求:(1)求BF長度;

2)求CE的長度.

【答案】16cm;(23cm

【解析】

1)設CE=xcm,EF=8-xcm,先在RtABF中利用勾股定理即可求得BF的長;

2)在RtECF中利用勾股定理即可求得EC的長.

1)由折疊得,AEF≌△AED,

AF=AD,EF=DE,

CE=xcmEF=8-xcm,

RtABF中,AB=8cm,AF=10cm

BF==6cm,

2)∵CF=10-6=4cm

∴在RtECF中,EF2=CE2+CF2,即(8-x2=x2+42

解得x=3

EC的長為3cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB:y=x+分別交x軸、y軸于點B、A兩點,C(3,0),D、E分別為線段AO和線段AC上一動點,BEy軸于點H,AD=CE.當BD+BE的值最小時,則H點的坐標為(

A. (0,4) B. (0,5) C. (0, D. (0,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠里有許多剩余的三角形邊角料,找出一塊△ABC,測得∠C=90°(如圖),現(xiàn)要從這塊三角形上剪出一個半圓O,做成玩具,要求:使半圓O與三角形的兩邊AB、AC相切,切點分別為D、C,且與BC交于點E.

(1)在圖中設計出符合要求的方案示意圖.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡).

(2)RtABC中,AC=3,AB=5,連接AO,求出AO的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣45),(﹣13).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

2)請作出ABC關于y軸對稱的A1B1C1

3)寫出點B1的坐標;

4)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,ADBC于點D,BEAC于點E,ADBE交于點F,BHAB于點B,點MBC的中點,連接FM并延長交BH于點H


1)如圖①所示,若∠ABC=30°,求證:DF+BH=BD;
2)如圖②所示,若∠ABC=45°,如圖③所示,若∠ABC=60°(點M與點D重合),猜想線段DF、BHBD之間又有怎樣的數(shù)量關系?請直接寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BEACE,且D、E分別是AB、AC的中點,延長BC至點F,使CF=CE
1)∠ABC的度數(shù).
2)求證:BE=FE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5。一只螞蟻如果要沿著長方體的表面從點A爬到點B,爬行的最短路程是( )

A.25B.C.35D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點Dy軸上,點B、點Cx軸上.若平行四邊形ABCD的面積為10,則k的值是( 。

A. ﹣10 B. ﹣5 C. 5 D. 10

查看答案和解析>>

同步練習冊答案