【題目】如圖,在正方形ABCD中,E為BC邊上一動點(diǎn)(不與點(diǎn)B、C重合),延長AE到點(diǎn)F,連接BF,且∠AFB=45°,G為DC邊上一點(diǎn),且DG=BE,連接DF,點(diǎn)F關(guān)于直線AB的對稱點(diǎn)為M,連接AM、BM.
(1)依據(jù)題意,補(bǔ)全圖形;
(2)求證:∠DAG=∠MAB;
(3)用等式表示線段BM、DF與AD的數(shù)量關(guān)系,并證明.
【答案】(1)詳見解析;(2)詳見解析;(3) BM2+DF2=2AD2;證明見解析.
【解析】
(1)由題意畫出圖形即可;
(2)由SAS證明△ABE≌△ADG得出∠BAE=∠DAG,由對稱的性質(zhì)得出∠BAE=∠MAB,即可得出∠DAG=∠MAB;
(3)連接BD,延長MB交AG的延長線于點(diǎn)N,由SAS證明△BAN≌△DAF得出∠N=∠AFD=45°,得出∠BFD=90°,由勾股定理得出BF2+DF2=BD2,即可得出結(jié)論.
(1)如圖1所示:
(2)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠ABC=∠BAD=∠ADG=90°,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,
∵點(diǎn)F關(guān)于直線AB的對稱點(diǎn)為M,
∴∠BAE=∠MAB,
∴∠DAG=∠MAB;
(3)BM2+DF2=2AD2;理由如下:
連接BD,延長MB交AG的延長線于點(diǎn)N,如圖2所示:
∵∠BAD=90°,∠DAG=∠MAB,
∴∠MAN=90°,
由對稱性可知:∠M=∠AFB=45°,
∴∠N=45°,
∴∠M=∠N,
∴AM=AN,
∵AF=AM,
∴AF=AN,
∵∠BAE=∠DAG,
∴∠BAN=∠DAF,
在△BAN和△DAF中,
,
∴△BAN≌△DAF(SAS),
∴∠N=∠AFD=45°,
∴∠BFD=90°,
∴BF2+DF2=BD2,
∵BDAD,BM=BF,
∴BM2+DF2=2AD2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,則m(am+b)>2(2a+b),其中正確的結(jié)論有______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點(diǎn)D是AB邊上一點(diǎn),過點(diǎn)D作DE // BC,交邊AC于E.過點(diǎn)C作CF // AB,交DE的延長線于點(diǎn)F.
(1)如果,求線段EF的長;
(2)求∠CFE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個直角三角形紙片,放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).將沿翻折得到(點(diǎn)為點(diǎn)的對應(yīng)點(diǎn)).
(Ⅰ)求的長及點(diǎn)的坐標(biāo);
(Ⅱ)點(diǎn)是線段上的點(diǎn),點(diǎn)是線段上的點(diǎn).
①已知,,是軸上的動點(diǎn),當(dāng)取最小值時,求出點(diǎn)的坐標(biāo)及點(diǎn)到直線的距離;
②連接,,且,現(xiàn)將沿翻折得到(點(diǎn)為點(diǎn)的對應(yīng)點(diǎn)),再將繞點(diǎn)順時針旋轉(zhuǎn),旋轉(zhuǎn)過程中,射線,交直線分別為點(diǎn),,最后將沿翻折得到(點(diǎn)為點(diǎn)的對應(yīng)點(diǎn)),連接,若,求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,P是BA延長線上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為D,連接BD,過點(diǎn)B作射線PD的垂線,垂足為C.
(1)求證:BD平分∠ABC;
(2)如果AB=6,sin∠CBD,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”以其顛覆性的創(chuàng)新,贏得了數(shù)億人的支持,為了調(diào)查某中學(xué)學(xué)生在周日上“微信”的時間,隨機(jī)對100名男生和100名女生進(jìn)行了問卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果
表1:男生上“微信時間的頻數(shù)分布表
上網(wǎng)時間(分鐘) | 30≤x<40 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 |
人數(shù) | 5 | 25 | 30 | 25 | 15 |
表2:女生上“微信”時間的頻數(shù)分布表
上網(wǎng)時間(分鐘) | 30≤x<40 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 |
人數(shù) | 10 | 20 | 40 | 20 | 10 |
請結(jié)合圖表完成下列各題
(1)完成表3:
表3 | 上“微信”時間少于60分鐘 | 上“微信”時間不少于60分鐘 |
男生人數(shù) |
|
|
女生人數(shù) |
|
|
(2)若該中學(xué)共有女生750人,請估計(jì)其中上“微信”時間不少于60分鐘的人數(shù);
(3)從表3的男生中抽取5人(其中3人上“微信”時間少于60分鐘,2人上“微信”時間不少于60分鐘),再從抽取的5人中任取2人,請用列表或畫樹狀圖的方法求出至少有一人上“微信”時間不少于60分鐘的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接國慶節(jié),某工廠生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠將該商品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
(1)求與的函數(shù)解析式(也稱關(guān)系式).
(2)若一次性批發(fā)量超過20且不超過50件時,求獲得的利潤與的函數(shù)關(guān)系式,同時求當(dāng)批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月17日是我國第6個扶貧日,也是第27個國際消除貧困日.為組織開展好銅陵市2019年扶貧日系列活動,促進(jìn)我市貧困地區(qū)農(nóng)產(chǎn)品銷售,增加貧困群眾收入,加快脫貧攻堅(jiān)步伐.我市決定將一批銅陵生姜送往外地銷售.現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱生姜,且甲種貨車裝運(yùn)1000箱生姜所用車輛與乙種貨車裝運(yùn)800箱生姜所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少箱生姜?
(2)如果這批生姜有1520箱,用甲、乙兩種汽車共16輛來裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了40箱,其它裝滿,求甲、乙兩種貨車各有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊邊長為,點(diǎn)是的內(nèi)心,,繞點(diǎn)旋轉(zhuǎn),分別交線段、于、兩點(diǎn),連接,給出下列四個結(jié)論:①形狀不變;②的面積最小不會小于四邊形的面積的四分之一;③四邊形的面積始終不變;④周長的最小值為.上述結(jié)論中正確的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com