【題目】如圖,在△ABC中,AB=4cmBC=5cmP上的動(dòng)點(diǎn).設(shè)A,P兩點(diǎn)間的距離為xcm

B,P兩點(diǎn)間的距離為cm,C,P兩點(diǎn)間的距離為cm

小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,的幾組對(duì)應(yīng)值:

x/cm

0

1

2

3

4

/cm

4.00

3.69

2.13

0

/cm

3.00

3.91

4.71

5.23

5

(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,)(x,),并畫(huà)出函數(shù)的圖象:

(3)結(jié)合函數(shù)圖象.

當(dāng)△PBC為等腰三角形時(shí),AP的長(zhǎng)度約為____cm

所在圓的圓心為點(diǎn)O,當(dāng)直線PC恰好經(jīng)過(guò)點(diǎn)O時(shí),PC的長(zhǎng)度約為_____cm

【答案】13.09(答案不唯一);(2)見(jiàn)解析;(3)①0.832.49(答案不唯一).②5.32(答案不唯一).

【解析】

1)利用圖象法解決問(wèn)題即可;
2)描點(diǎn)繪圖即可;
3)①分PB=PB、PC=BC、PB=BC三種情況,分別求解即可;
②當(dāng)直線PC恰好經(jīng)過(guò)點(diǎn)O時(shí),PC的長(zhǎng)度取得最大值,觀察圖象即可求解.

解:(1)由畫(huà)圖可得,x=4時(shí),y1≈3.09cm(答案不唯一).
故答案為:3.09(答案不唯一).

2)描點(diǎn)繪圖如下:

3)①由y1y2的交點(diǎn)的橫坐標(biāo)可知,x≈0.83cm時(shí),PC=PB,
當(dāng)x≈2.49cm時(shí),y2=5cm,即PC=BC,
觀察圖象可知,PB不可能等于BC,
故答案為:0.832.49(答案不唯一).
②當(dāng)直線PC恰好經(jīng)過(guò)點(diǎn)O時(shí),PC的長(zhǎng)度取得最大值,從圖象看,PC=y2≈5.32cm,
故答案為5.32(答案不唯一).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】成都市天府一南站城市立交橋是成都市政府確定的城建標(biāo)志性建筑,如圖是立交橋引申出的部分平面圖,測(cè)得拉索AB與水平橋面的夾角是37°,拉索DE與水平橋面的夾角是67°,兩拉索頂端的距離AD2m,兩拉索底端距離BE10m,請(qǐng)求出立柱AC的長(zhǎng).(參考數(shù)據(jù)tan37°≈sin37°≈,cos37°≈,tan67°≈,sin67°≈,cos67°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖1中畫(huà)一個(gè)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形;

2)在圖2中畫(huà)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、為頂點(diǎn)的四邊形是中心對(duì)稱(chēng)圖形;

3)直接寫(xiě)出圖2中四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A31),點(diǎn)B0,4).

1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);

2)點(diǎn)Cm,n)在該二次函數(shù)圖象上.

當(dāng)m=﹣1時(shí),求n的值;

當(dāng)mx3時(shí),n最大值為5,最小值為1,請(qǐng)根據(jù)圖象直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了某月(30天)接待游客人數(shù)(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的統(tǒng)計(jì)圖和統(tǒng)計(jì)表:

根據(jù)以上信息,以下四個(gè)判斷中,正確的是_________(填寫(xiě)所有正確結(jié)論的序號(hào))

該景區(qū)這個(gè)月游玩環(huán)境評(píng)價(jià)為擁擠或嚴(yán)重?fù)頂D的天數(shù)僅有4天;

該景區(qū)這個(gè)月每日接待游客人數(shù)的中位數(shù)在5~10廣域網(wǎng)人之間;

該景區(qū)這個(gè)月平均每日接待游客人數(shù)低于5萬(wàn)人;

這個(gè)月1日至5日的五天中,如果某人曾經(jīng)隨機(jī)選擇其中的兩天到該景區(qū)游玩,那么他這兩天游玩環(huán)境評(píng)價(jià)均為好的可能性為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為( 。

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E

1)證明:四邊形ACDE是平行四邊形;

2)若AC=8,BD=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究

1)請(qǐng)?jiān)趫D①的的邊上求作一點(diǎn),使最短;

2)如圖②,點(diǎn)內(nèi)部一點(diǎn),且滿足.求證:點(diǎn)到點(diǎn)、、的距離之和最短,即最短;

問(wèn)題解決

3)如圖③,某高校有一塊邊長(zhǎng)為400米的正方形草坪,現(xiàn)準(zhǔn)備在草坪內(nèi)放置一對(duì)石凳及垃圾箱在點(diǎn)處,使點(diǎn)、三點(diǎn)的距離之和最小,那么是否存在符合條件的點(diǎn)?若存在,請(qǐng)作出點(diǎn)的位置,并求出這個(gè)最短距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)在射線上,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合).點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為點(diǎn),連接,點(diǎn)在直線上,且滿足.小明在探究圖形運(yùn)動(dòng)的過(guò)程中發(fā)現(xiàn):始終成立.

1)如圖1,當(dāng)時(shí);

①求證:

②用等式表示線段、之間的數(shù)量關(guān)系,并證明;

2)當(dāng)時(shí),直接用等式表示線段、之間的數(shù)量關(guān)系是______

查看答案和解析>>

同步練習(xí)冊(cè)答案