9
分析:由ABCD為正方形,根據(jù)正方形的性質(zhì)得到AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又根據(jù)CG與BE垂直得到∠BCG+∠CBG=90°,根據(jù)同角的余角相等得到一對角相等,又根據(jù)一對直角相等,利用“AAS”即可得到三角形BCG與三角形FBA全等,根據(jù)全等三角形的對應(yīng)邊相等得到AF與BG相等,又因為FH=FB,從而得到AH=FG,然后由垂直得到一對直角相等,加上一個公共角,得到三角形APH與三角形ABF相似,根據(jù)相似得比例,設(shè)AH=FG=x,用x表示出PH,由四邊形PHFB一組對邊平行,另一組對邊不平行得到此四邊形為梯形,根據(jù)梯形的面積公式,由上底PH,下底為BF=3,高FH=3,表示出梯形的面積;然后在三角形BCG與三角形ECG中,根據(jù)同角的余角相等,再加上一對直角得到兩三角形相似,根據(jù)相似得比例,用含x的式子表示出GE,由CG=3,利用表示出的GE,利用三角形的面積公式表示出直角三角形CGE的面積,把表示出的兩面積相加,化簡即可得到值.
解答:∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,
又CG⊥BE,即∠BGC=90°,
∴∠BCG+∠CBG=90°,
∴∠ABF=∠BCG,
又AF⊥BG,
∴∠AFB=∠BGC=90°,
∴△ABF≌△BCG,
∴AF=BG,BF=CG=FH=3,
又∵FH=BF,
∴AH=FG,設(shè)AH=FG=x,
∵PH⊥AF,BF⊥AF,
∴∠AHP=∠AFB=90°,又∠PAH為公共角,
∴△APH∽△ABF,
∴
![](http://thumb.zyjl.cn/pic5/latex/555290.png)
=
![](http://thumb.zyjl.cn/pic5/latex/86173.png)
,即PH=
![](http://thumb.zyjl.cn/pic5/latex/37184.png)
,
∵FH∥BF,BP不平行FH,
∴四邊形BFHP為梯形,其面積為
![](http://thumb.zyjl.cn/pic5/latex/555291.png)
=
![](http://thumb.zyjl.cn/pic5/latex/555292.png)
+
![](http://thumb.zyjl.cn/pic5/latex/190.png)
;
又∵∠BCG+∠ECG=90°,∠ECG+∠BEC=90°,
∴∠BCG=∠BEC,又∠BGC=∠CGE=90°,
∴△BCG∽△CEG,
∴
![](http://thumb.zyjl.cn/pic5/latex/329871.png)
=
![](http://thumb.zyjl.cn/pic5/latex/159518.png)
,即GE=
![](http://thumb.zyjl.cn/pic5/latex/203959.png)
,故Rt△CGE的面積為
![](http://thumb.zyjl.cn/pic5/latex/13.png)
×3×
![](http://thumb.zyjl.cn/pic5/latex/203959.png)
,
則△CGE與四邊形BFHP的面積之和為
![](http://thumb.zyjl.cn/pic5/latex/555292.png)
+
![](http://thumb.zyjl.cn/pic5/latex/190.png)
+
![](http://thumb.zyjl.cn/pic5/latex/555293.png)
=
![](http://thumb.zyjl.cn/pic5/latex/555294.png)
+
![](http://thumb.zyjl.cn/pic5/latex/190.png)
=9.
故答案為:9
點評:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及相似三角形的判定與性質(zhì),此題的綜合性比較強,常常綜合了多個考點和數(shù)學(xué)思想方法,因而解答時需“分解題意”,即將一個大問題分解為一個一個的小問題,從而解決問題.