【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)按要求填空:
①你認為圖②中的陰影部分的正方形的邊長等于 ;
②請用兩種不同的方法表示圖②中陰影部分的面積:
方法1:
方法2:
③觀察圖②,請寫出代數式(m+n)2,(m﹣n)2,mn這三個代數式之間的等量關系: ;
(2)根據(1)題中的等量關系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.
(3)實際上有許多代數恒等式可以用圖形的面積來表示,如圖③,它表示了 .
【答案】(1)①m﹣n;②(m﹣n)2;(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(2)(m﹣n)2=20;(3)(2m+n)(m+n)=2m2+3mn+n2
【解析】
(1)①觀察可得陰影部分的正方形邊長是m-n;
②方法1:陰影部分的面積就等于邊長為m-n的小正方形的面積;方法2:邊長為m+n的大正方形的面積減去4個長為m,寬為n的長方形面積;
③根據以上相同圖形的面積相等可得;
(2)根據|m+n-6|+|mn-4|=0可得m+n=6、mn=4,利用(1)中結論(m-n)2=(m+n)2-4mn計算可得;
(3)根據:大長方形面積等于長乘以寬或兩個邊長分別為m、n的正方形加上3個長為m、寬為n的小長方形面積和列式可得.
(1)①陰影部分的正方形邊長是m﹣n.
②方法1:陰影部分的面積就等于邊長為m﹣n的小正方形的面積,
即(m﹣n)2,
方法2:邊長為m+n的大正方形的面積減去4個長為m,寬為n的長方形面積,即(m+n)2﹣4mn;
③(m﹣n)2=(m+n)2﹣4mn.
(2))∵|m+n﹣6|+|mn﹣4|=0,
∴m+n﹣6=0,mn﹣4=0,
∴m+n=6,mn=4
∵由(1)可得(m﹣n)2=(m+n)2﹣4mn
∴(m﹣n)2=(m+n)2﹣4mn=62﹣4×4=20,
∴(m﹣n)2=20;
(3)根據大長方形面積等于長乘以寬有:(2m+n)(m+n),
或兩個邊長分別為m、n的正方形加上3個長為m、寬為n的小長方形面積和有:2m2+3mn+n2,
故可得:(2m+n)(m+n)=2m2+3mn+n2.
故答案為:(1)m﹣n;(2)①(m﹣n)2,②(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(3)(2m+n)(m+n)=2m2+3mn+n2.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A點坐標為(﹣4,﹣3),將線段OA繞原點O順時針旋轉90°得到OA′,則點A′的坐標是( 。
A. (﹣4,3) B. (﹣3,4) C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若直線BC的函數解析式為y’=kx+b,求當滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)操作發(fā)現:如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在△ABC的外側分別以AB,AC為腰作了兩個等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點M,N,G,連接GM,GN.小明發(fā)現了:線段GM與GN的數量關系是__________;位置關系是__________.
(2)類比思考:
如圖②,小明在此基礎上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中AB>AC,其它條件不變,小明發(fā)現的上述結論還成立嗎?請說明理由.
(3)深入研究:
如圖③,小明在(2)的基礎上,又作了進一步的探究.向△ABC的內側分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷△GMN的形狀,并給與證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A、D在直線l的同側.
(1)如圖1,在直線l上找一點C.使得線段AC+DC最。ㄕ埻ㄟ^畫圖指出點C的位置);
(2)如圖2,在直線l上取兩點B、E,恰好能使△ABC和△DCE均為等邊三角形.M、N分別是線段AC、BC上的動點,連結DN交AC于點G,連結EM交CD于點F.
①當點M、N分別是AC、BC的中點時,判斷線段EM與DN的數量關系,并說明理由;
②如圖3,若點M、N分別從點A和B開始沿AC和BC以相同的速度向點C勻速運動,當M、N與點C重合時運動停止,判斷在運動過程中線段GF與直線1的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調查了部分居民小區(qū)一段時間內生活垃圾的分類情況,其相關信息如下:
根據圖表解答下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)在抽樣數據中,產生的有害垃圾共 噸;
(3)調查發(fā)現,在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設該城市每月產生的生活垃圾為5 000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關聯(lián)方程.
(1)在方程①3x-1=0;②x+1=0;③x-(3x+1)=-5中,不等式組關聯(lián)方程是______(填序號).
(2)若不等式組的一個關聯(lián)方程的根是整數,則這個關聯(lián)方程可以是______(寫出一個即可).
(3)若方程9-x=2x,3+x=2(x+)都是關于x的不等式組的關聯(lián)方程,試求出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥DC,AC和BD相交于點O,E是CD上一點,F是OD上一點,且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠BOC比∠DFE大20,求∠OFE的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com