【題目】如圖,ABBC,以BC為直徑作⊙O,AC交⊙O于點E,過點EEGAB于點F,交CB的延長線于點G

1)求證:EG是⊙O的切線;

2)若GF2,GB4,求⊙O的半徑.

【答案】1)見解析;(2)⊙O的半徑為4

【解析】

1)連接OE,根據(jù)等腰三角形的性質(zhì)和平行線的性質(zhì)即可得到結(jié)論;

2)根據(jù)勾股定理和相似三角形的判定和性質(zhì)定理即可得到結(jié)論.

解:(1)連接OE

ABBC,

∴∠A=∠C;

OEOC,

∴∠OEC=∠C

∴∠A=∠OEC,

OEAB

BAGE,

OEEG,且OE為半徑;

EG是⊙O的切線;

2)∵BFGE,

∴∠BFG90°,

,GB4

,

BFOE,

∴△BGF∽△OGE

,

OE4,

即⊙O的半徑為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠ABC90°,DBC邊的中點,BEAD于點E,交ACF,若AB4,BC6,則線段EF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC與△ABD中,∠CAB=∠DBAβ,且∠ADB+∠ACB180°

提出問題:如圖1,當∠ADB=∠ACB90°時,求證:ADBC;

類比探究:如圖2,當∠ADB≠ACB時,ADBC是否還成立?并說明理由.

綜合運用:如圖3,當β18°,BC1,且ABBC時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日為世界閱讀日,為響應(yīng)黨中央倡導(dǎo)全民閱讀,建設(shè)書香會的號召,某校團委組織了一次全校學(xué)生參加的讀書活動大賽為了解本次賽的成績,校團委隨機抽取了部分學(xué)生的成績(成績取整數(shù),總分100)作為本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表(頻數(shù)頻率分布表和頻數(shù)分布直方圖)

成績()

頻數(shù)()

頻率

10

0.05

30

0.15

40

0.35

50

0.25

根據(jù)所給信息,解答下列問題:

(1)抽取的樣本容量是 ; , ;

(2)補全頻數(shù)分布直方圖;這200名學(xué)生成績的中位數(shù)會落在 分數(shù)段;

(3)全校有1200名學(xué)生參加比賽,若得分為90分及以上為優(yōu)秀,請你估計全校參加比賽成績優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠A90°,∠B30°,CDCADBC上,∠ADE45°,EAB上,則∠BED的度數(shù)是(  )

A.60°B.75°C.80°D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師隨機抽取了九年級甲、乙兩班部分學(xué)生進行一分鐘跳繩的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:

分組

頻數(shù)

頻率

第一組(0x<120)

3

0.15

第二組(120x<160)

8

a

第三組(160x<200)

7

0.35

第四組(200x<240)

b

0.1

(1)頻數(shù)分布表中a____,b_____,并將統(tǒng)計圖補充完整;

(2)如果該校九年級共有學(xué)生360人,估計跳繩能夠一分鐘完成160160次以上的學(xué)生有多少人?

(3)已知第一組中有兩個甲班學(xué)生,第四組中只有一個甲班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談測試體會,則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為正方形ABCD的對角線,點EDC邊上一點(不與C、D重合),連接BE,以E為旋轉(zhuǎn)中心,將線段EB逆時針旋轉(zhuǎn)90°,得到線段EF,連接DF

1)請在圖中補全圖形.

2)求證:ACDF

3)探索線段ED、DF、AC的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量休閑涼亭AB的高度,某數(shù)學(xué)興趣小組在水平地面D處豎直放置一個標桿CD,并在地面上水平放置一個平面鏡E,使得B、E、D在同一水平線上,如圖所示.該小組在標桿的F處通過平面鏡E恰好觀測到?jīng)鐾ろ敹?/span>A,在F處測得涼亭A頂端的仰角為30°,平面鏡E的俯角為45°,FD2米,求休閑涼亭AB的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點EBC的中點,AEBD交于點P,FCD上的一點,連接AF分別交BD,DE于點M,N,且AFDE,連接PN,則下列結(jié)論中:

;②;③tanEAF=;④正確的是()

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

同步練習(xí)冊答案