【題目】如圖,在△ABC中,∠B=90°,AB=4,BC=3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在線段AC上的點(diǎn)D處,點(diǎn)C落在點(diǎn)E處,則C、E兩點(diǎn)間的距離為( )
A.
B.2
C.3
D.2
【答案】A
【解析】解:在△ABC中,∠C=90°,AB=4,BC=3,
∴AC=5,
∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AED,
∴∠DEA=∠C=90°,AD=AB=4,DE=BC=3,
∴CD=AC﹣AD=5﹣4=1,
連接CE,在Rt△CDE中,由勾股定理可得CE= ,
即C、E兩點(diǎn)間的距離為 ,
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是AB所對(duì)弦AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥AB交AB于點(diǎn)M,連接MB,過(guò)點(diǎn)P作PN⊥MB于點(diǎn)N.已知AB=6cm,設(shè)A、P兩點(diǎn)間的距離為xcm,P、N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.0 | 2.3 | 2.1 | 0.9 | 0 |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象.
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)△PAN為等腰三角形時(shí),AP的長(zhǎng)度約為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+AM的值最小時(shí),求M的坐標(biāo);
(4)在線段BC下方的拋物線上有一動(dòng)點(diǎn)P,求△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD的邊長(zhǎng)為4,點(diǎn)E為BC的中點(diǎn),點(diǎn)P為AB上一動(dòng)點(diǎn),沿PE翻折△BPE得到△FPE,直線PF交CD邊于點(diǎn)Q,交直線AD于點(diǎn)G,聯(lián)接EQ.
(1)如圖,當(dāng)BP=1.5時(shí),求CQ的長(zhǎng);
(2)如圖,當(dāng)點(diǎn)G在射線AD上時(shí),BP=x,DG=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)延長(zhǎng)EF交直線AD于點(diǎn)H,若△CQE與△FHG相似,求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)了一款成本為60元的保溫飯盒,投放市場(chǎng)進(jìn)行試銷(xiāo)售,按物價(jià)部門(mén)規(guī)定,其銷(xiāo)售單價(jià)不低于成本,但銷(xiāo)售利潤(rùn)不高于65%,市場(chǎng)調(diào)研發(fā)現(xiàn),保溫飯盒每天的銷(xiāo)售數(shù)量y(個(gè))與銷(xiāo)售單價(jià)x(元)滿足一次函數(shù)關(guān)系;當(dāng)銷(xiāo)售單價(jià)為70元時(shí),銷(xiāo)售數(shù)量為160個(gè);當(dāng)銷(xiāo)售單價(jià)為80元時(shí),銷(xiāo)售數(shù)量為140個(gè)(利潤(rùn)率= )
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),公司每天獲得利潤(rùn)最大,最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB、AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+ =0的兩個(gè)實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么平行四邊形ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正確的是( )
A.②④⑤
B.①②④
C.①③④
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D點(diǎn),連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點(diǎn),試問(wèn)當(dāng)點(diǎn)M在什么位置時(shí),直線DM與⊙O相切?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,F(xiàn)是BC上一點(diǎn),且AF=BC,DE⊥AF,垂足是E,連接DF.求證:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com