【題目】如圖,矩形ABCD中,AD=6,DC=8,菱形EFGH的三個頂點E、G、H分別在矩形ABCD的邊AB、CD、DA上,AH=2.
(1)已知DG=6,求AE的長;
(2)已知DG=2,求證:四邊形EFGH為正方形.
【答案】(1)AE=4;(2)詳見解析.
【解析】
(1)先根據(jù)矩形的性質(zhì),利用勾股定理列出表達式:HG2=DH2+DG2,HE2=AH2+AE2,再根據(jù)菱形的性質(zhì),得到等式DH2+DG2=AH2+AE2,最后計算AE的長;
(2)先根據(jù)已知條件,用HL判定Rt△DHG≌Rt△AEH,得到菱形的一組鄰邊相等,進而判定該菱形為正方形.
(1)解 ∵AD=6,AH=2,
∴DH=AD-AH=4,
∵四邊形ABCD是矩形,
∴∠A=∠D=90°,
∴在Rt△DHG中,HG2=DH2+DG2,
在Rt△AEH中,HE2=AH2+AE2,
∵四邊形EFGH是菱形,
∴HG=HE,
∴DH2+DG2=AH2+AE2,
即42+62=22+AE2,
∴AE==4.
(2)證明∵AH=2,DG=2,
∴AH=DG,
∵四邊形EFGH是菱形,
∴HG=HE,
在Rt△DHG和Rt△AEH中,
∴Rt△DHG≌Rt△AEH(HL),
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∵四邊形EFGH是菱形,
∴四邊形EFGH是正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,的頂點均在格點上.
(1)請建立合適的平面直角坐標系,使點,的坐標分別為和,并寫出點的坐標為___________;
(2)在(1)的條件下.①中任意一點經(jīng)平移后對應(yīng)點,將作同樣的平移得到,請畫出,并直接寫出點的坐標;
②點在軸上,且,則點的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:
(1)請你以火車站為原點建立平面直角坐標系,若以小方格的邊長為單位長度,寫出市場的坐標為_______;超市的坐標為_____________.
(2)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將△ABC向下平移4個單位長度,畫出平移后的,寫出的坐標.
(3)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1 , 作正方形A1B1C1C,延長C1B1交x軸于點A2 , 作正方形A2B2C2C1,………按這樣的規(guī)律進行下去,第2012個正方形的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2625元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,∠A=33°,將三角形ABC沿AB方向向右平移得到三角形DEF.
(1)試求出∠E的度數(shù);
(2)若AE=9 cm,DB=2 cm,求出BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=4㎝,F(xiàn)是弦BC的中點,∠ABC=60°,若動點E以1 ㎝/s的速度從A點出發(fā)在AB上沿著A→B→A運動,設(shè)運動時間為t(s)(0≤t<16),連接EF,當△BEF是直角三角形時,t(s)的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是AB的中點,點F是BC延長線上一點,連接DF,交AC于點E,連接BE,∠A=∠ABE.
(1)求證:DF是線段AB的垂直平分線;
(2)當AB=AC,∠A=46°時,求∠EBC及∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com