【題目】將△ABC的紙片按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折疊痕為EF,已知AB=AC=8,BC=10,若以點B′、F、C為頂點的三角形與△ABC相似,那么BF的長度是

【答案】
【解析】解:設BF=x, ∵△ABC的紙片按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折疊痕為EF,
∴BF=B′F=x,
∴FC=BC﹣BF=10﹣x,
∵∠FCB′=∠BCA,
∴當 = = 時,△CFB′∽△CBA,
= ,即得x= ;
= = 時,△CFB′∽△CAB,
= ,即得x=
綜上所述,當BF= 時,以點B′、F、C為頂點的三角形與△ABC相似.
故答案為
設BF=x,利用折疊的性質(zhì)得BF=B′F=x,則FC=10﹣x,由于∠FCB′=∠BCA,利用相似三角形的判定方法,當 = = 時,△CFB′∽△CBA或 = = 時,△CFB′∽△CAB,
然后利用相似比分別得到關于x的方程,再分別解方程求出x即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次期中考試中,
(1)一個班級有甲、乙、丙三名學生,分別得到70分、80分、90分.這三名同學的平均得分是多少?
(2)一個班級共有40名學生,其中5人得到70分,20人得到80分,15人得到90分.求班級的平均得分.
(3)一個班級中,20%的學生得到70分,50%的學生得到80分,30%的學生得到90分.求班級的平均得分.
(4)中考的各學科的分值依次為:數(shù)學150分,語文150分,物理100分,政治50分,歷史50分,合計總分為500分. 在這次期中考試中,各門學科的總分都設置為100分,現(xiàn)已知甲、乙兩名學生的得分如下表:

學科

數(shù)學

語文

物理

政治

歷史

80

90

80

80

70

80

80

70

80

95

你認為哪名同學的成績更理想,寫出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明有5張寫著不同的數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是   

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是   ;

(3)從中取出4張卡片,用學過的運算方法,使結果為24.寫出運算式子:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB4,BC5,點E在邊CD上,以B為坐標原點,BA所在直線為y軸,BC所在直線為x軸,建立平面直角坐標系A(0,4).以AE所在直線為折痕折疊長方形ABCD,點D恰好落在BC邊上的F點.

(1)求點F的坐標;

(2)求點E的坐標;

(3)AE上是否存在點P,使PBPF最小?若存在,作出點P的位置,并求出PBPF的最小值;不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(-6)-(-9); (2)1.8-(-2.6);

(3); (4)8-(9-10);

(5)(-61)-(-71)-(-8)-(-2); (6)-3.7-(-)-1.3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司的快遞車和貨車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達乙地后卸完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示.

現(xiàn)有以下4個結論:

①快遞車從甲地到乙地的速度為100千米/小時;

②甲、乙兩地之間的距離為120千米;

③圖中點B的坐標為(3.75,75);

④快遞車從乙地返回時的速度為90千米/小時

以上結論正確的是________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為提倡節(jié)約用水,準備實行自來水階梯計費方式,為更好地決策,自來水公司隨機抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次抽樣調(diào)查的樣本容量是_____

(2)補全頻數(shù)分布直方圖,并求扇形圖中“15噸~20部分的圓心角度數(shù);

(3)用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起其中,,;

,則的度數(shù)為______;

,求的度數(shù);

猜想的數(shù)量關系,并說明理由.

且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出角度所有可能的值不必說明理由,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案