【題目】如圖,平行四邊形ABCD中,過點(diǎn)B的直線與對角線AC、邊AD分別交于點(diǎn)E和F.過點(diǎn)E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 4對B. 5對C. 6對D. 7對
【答案】B
【解析】
試題根據(jù)平行四邊形的性質(zhì)得出AD∥BC,AB∥CD,AD=BC,AB=CD,∠D=∠ABC,推出△ABC≌△CDA,即可推出△ABC∽△CDA,根據(jù)相似三角形的判定定理:平行于三角形一邊的直線截其它兩邊或其它兩邊的延長線,所截的三角形與原三角形相似即可推出其它各對三角形相似.
解:圖中相似三角形有△ABC∽△CDA,△AGE∽△ABC,△AFE∽△CBE,△BGE∽△BAF,△AGE∽△CDA共5對,
理由是:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,AD=BC,AB=CD,∠D=∠ABC,
∴△ABC≌△CDA,即△ABC∽△CDA,
∵GE∥BC,
∴△AGE∽△ABC∞△CDA,
∵GE∥BC,AD∥BC,
∴GE∥AD,
∴△BGE∽△BAF,
∵AD∥BC,
∴△AFE∽△CBE.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自行車遠(yuǎn)動員甲準(zhǔn)備參加一項(xiàng)國際自行車賽事,為此特地騎自行車從A地出發(fā),勻速前往168千米外的B地進(jìn)行拉練.出發(fā)2小時(shí)后,乙發(fā)現(xiàn)他忘了帶某訓(xùn)練用品,于是馬上騎摩托車從A地出發(fā)勻速去追甲送該用品.已知乙騎摩托車的速度比甲騎自行車的速度每小時(shí)多30千米,但摩托車行駛一小時(shí)后突遇故障,修理15分鐘后,又上路追甲,但速度減小了,乙追上甲交接了訓(xùn)練用品(交接時(shí)間忽略不計(jì)),隨后立即以修理后的速度原路返回,甲繼續(xù)以原來的速度騎行直至B地.如圖表示甲、乙兩人之間的距離S(千米)與甲騎行的時(shí)間t(小時(shí))之間的部分圖象,則當(dāng)甲達(dá)到B地時(shí),乙距離A地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=2,∠BAC=45°.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α度(0<α<180)得到△ADE,B,C兩點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn)D,E,BD,CE所在直線交于點(diǎn)F.
(1)當(dāng)△ABC旋轉(zhuǎn)到圖1位置時(shí),∠CAD= (用α的代數(shù)式表示),∠BFC的度數(shù)為 °;
(2)當(dāng)α=45時(shí),在圖2中畫出△ADE,并求此時(shí)點(diǎn)A到直線BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,點(diǎn)E在AD上,EC平分∠BED.
(1)試判斷△BEC是否為等腰三角形,并說明理由.
(2)若AB=1,∠ABE=45°,求BC的長.
(3)在原圖中畫△FCE,使它與△BEC關(guān)于CE的中點(diǎn)O成中心對稱,此時(shí)四邊形BCFE是什么特殊平行四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BC交x軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2009年開始投入技術(shù)改造資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改資金x(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本y(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)試判斷:從上表中的數(shù)據(jù)看出,y與x符合你學(xué)過的哪個(gè)函數(shù)模型?請說明理由,并寫出它的解析式.
(2)按照上述函數(shù)模型,若2013年已投入技改資金5萬元
①預(yù)計(jì)生產(chǎn)成本每件比2012年降低多少元?
②如果打算在2013年把每件產(chǎn)品的成本降低到3.2萬元,則還需投入技改資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OB上,OM=x,ON=x+4,點(diǎn)P是邊OA上的點(diǎn),且△PMN是等腰三角形.在x>2的條件下,(1)當(dāng)x=______時(shí),符合條件的點(diǎn)P只有一個(gè);(2)當(dāng)x=______時(shí),符合條件的點(diǎn)P恰好有三個(gè).(兩個(gè)小題都只寫出一個(gè)數(shù)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)上兩點(diǎn),為一動點(diǎn),作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com