【題目】(1)化簡(jiǎn):
(2)計(jì)算:;
(3)化簡(jiǎn):;
(4)已知求代數(shù)式的值;
(5)已知求代數(shù)式的值.
【答案】(1)2xy-y2;(2)1;(3)-11a6;(4)6;(5)13.
【解析】
(1)原式第一項(xiàng)利用單項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則進(jìn)行計(jì)算,第二項(xiàng)運(yùn)用完全平方公式進(jìn)行計(jì)算,去括號(hào)合并同類項(xiàng)即可得到結(jié)果;
(2)原式第二項(xiàng)2010變成2009+1,2008變成2009-1,利用平方差公式化簡(jiǎn),去括號(hào)合并即可得到結(jié)果;
(3)原式先利用積的乘方和冪的乘方運(yùn)算法則進(jìn)行計(jì)算,合并同類項(xiàng)即可得到結(jié)果;
(4)先根據(jù)整式的混合運(yùn)算順序和運(yùn)算法則進(jìn)行化簡(jiǎn),再將即整體代入即可;
(5)先根據(jù)多項(xiàng)式除以單項(xiàng)式的法則計(jì)算原式,再將n的值代入計(jì)算即可得結(jié)果.
(1)
=
=;
(2)
=
=
=1;
(3)
=
=;
(4)
=
=
當(dāng)即時(shí),
原式=3()+9
=-3+9
=6;
(5)=2n2-2n+1
當(dāng)n=-2時(shí),
原式=
=8+4+1
=13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)圖象的開(kāi)口方向是 ,對(duì)稱軸是 ,頂點(diǎn)坐標(biāo)為 ;
(2)當(dāng)x 時(shí),y隨x的增大而減。
(3)怎樣移動(dòng)拋物線就可以得到拋物線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法合理的是:( )
A. “打開(kāi)電視,正在播放新聞節(jié)日”是必然事件
B. “拋一枚硬幣,正面朝上的概率為”表示每拋兩次就有一次正面朝上
C. “拋擲一枚均勻的骰子,出現(xiàn)點(diǎn)數(shù)6的概率是”表示隨著拋擲次數(shù)的增加“出現(xiàn)點(diǎn)數(shù)6”這一事件發(fā)生的頻率穩(wěn)定在附近
D. 為了解某品牌火腿的質(zhì)量,選擇全面檢測(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的頂點(diǎn)、在反比例函數(shù)的圖象上,頂點(diǎn)、分別在軸、軸的正半軸上,再在其右側(cè)作正方形,頂點(diǎn)在反比例函數(shù)的圖象上,頂點(diǎn)在軸的正半軸上,則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC被平行光線照射,CD⊥AB于D,AB在投影面上.
(1)指出圖中AC的投影是什么?CD與BC的投影呢?
(2)探究:當(dāng)△ABC為直角三角形(∠ACB=90°)時(shí),易得AC2=AD·AB,此時(shí)有如下結(jié)論:直角三角形一直角邊的平方等于它在斜邊射影與斜邊的乘積,這一結(jié)論我們稱為射影定理.通過(guò)上述結(jié)論的推理,請(qǐng)證明以下兩個(gè)結(jié)論.
①BC2=BD·AB;②CD2=AD·BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB于E,CD=AB,DA、BC延長(zhǎng)線交于F.
(1)若AC=12,∠ABC=30°,求DE的長(zhǎng);
(2)若BC=2AC,求證:DA=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,-4),B(3,-3),C(1,-1).
(1)將△ABC先向上平移5個(gè)單位,再向左平移3個(gè)單位,畫出平移后得到的△A1B1C1;
(2)寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(3)若△ABC內(nèi)有一點(diǎn)P(a,b),請(qǐng)寫出平移后得到的對(duì)應(yīng)點(diǎn)P1的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com