【題目】10分)國慶期間,為了滿足百姓的消費需求,某商店計劃用170000元購進一批家電,這批家電的進價和售價如表:

若在現(xiàn)有資金允許的范圍內,購買表中三類家電共100臺,其中彩電臺數(shù)是冰箱臺數(shù)的2倍,設該商店購買冰箱x臺.

1)商店至多可以購買冰箱多少臺?

2)購買冰箱多少臺時,能使商店銷售完這批家電后獲得的利潤最大?最大利潤為多少元?

【答案】126;(2)購買冰箱26臺時,能使商店銷售完這批家電后獲得的利潤最大,最大利潤為23000元.

【解析】試題分析:(1)根據(jù)三種家電的總進價小于等于170000元列出關于x的不等式,由x為正整數(shù),即可得到答案;

2)設商店銷售完這批家電后獲得的利潤為y元,則y=500x+10000,結合(1)中x的取值范圍,利用一次函數(shù)的性質即可解答.

試題解析:(1)根據(jù)題意,得:20002x+1600x+1000100﹣3x≤170000,解得: ,x為正整數(shù),x至多為26

答:商店至多可以購買冰箱26臺.

2)設商店銷售完這批家電后獲得的利潤為y元,則y=2300﹣20002x+1800﹣1600x+1100﹣1000)(100﹣3x=500x+10000,k=5000,yx的增大而增大,x為正整數(shù),x=26時,y有最大值,最大值為:500×26+10000=23000,

答:購買冰箱26臺時,能使商店銷售完這批家電后獲得的利潤最大,最大利潤為23000元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.

【答案】-6

【解析】試題分析:∵點Ax1,y1),Bx2,y2)是雙曲線y上的點,

x1y1x2y2=-3,

∵直線ykxk0)與雙曲線y交于點Ax1y1),Bx2y2)兩點,

x1=-x2,y1=-y2,

∴原式=-3x1y15x2y2915=-6

故答案為:6

點睛:本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的對稱性,根據(jù)反比例函數(shù)的圖象關于原點對稱得出x1=-x2,y1=-y2是解答此題的關鍵.

型】填空
束】
15

【題目】AB兩地相距180km,新修的高速公路開通后,在A,B兩地間行駛的長途客車平均車速提高了 50%,而從A地到B地的時間縮短了 1h .若設原來的平均車速為xkm/h,則根據(jù)題意可列方程為 _____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學在求多邊形的內角和時,多算了一個內角的度數(shù),求得內角和為1 560°,問這個內角是多少度?這個多邊形的邊數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負

星期

增減

根據(jù)記錄可知前三天共生產(chǎn)多少輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;

該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務,則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列各式:(ab2=a2b2,(ab3=a3b3,(ab4=a4b4

回答下列三個問題:

1)驗證:(100=   ,2100×100=   

2)通過上述驗證,歸納得出:(abn=   ; abcn=   

3)請應用上述性質計算:(﹣0.1252017×22016×42015

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍.了解信息如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元;經(jīng)洽談:甲店每買一副球拍贈一盒乒乓球;乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5).問:

(1)當購買乒乓球x盒時,兩種優(yōu)惠辦法各應付款多少元?(用含x的代數(shù)式表示)

(2)如果要購買15盒乒乓球時,請你去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.

當?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:

方案一:將蔬菜全部進行粗加工;

方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.

你認為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥FC,D是AB上一點,DF交AC于點E,DE=FE,分別延長FD和CB交于點G.
(1)求證:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,定點E,F(xiàn)分別在直線AB,CD上,在平行線AB、CD之間有一動點P,滿足0°<∠EPF<180°.

(1)試問∠AEP,∠EPF,∠PFC滿足怎樣的數(shù)量關系?

解:由于點P是平行線AB、CD之間有一動點,因此需要對點P的位置進行分類討論;如圖1,當P點在EF的左側時,∠AEP,∠EPF,∠PFC滿足數(shù)量關系為______________,如圖2,當P點在EF的右側時,∠AEP,∠EPF,∠PFC滿足數(shù)量關系為______________。

(2)如圖3,QE,QF分別平分∠PEB和∠PFD,且點P在EF左側.

①若∠EPF=60°,則∠EQF=_______°.

②猜想∠EPF與∠EQF的數(shù)量關系,并說明理由.

③如圖4,若∠BEQ與∠DFQ的角平分線交于點Q1,∠BEQ1與∠DFQ1的角平分線交于點Q2,∠BEQ2與∠DFQ2的角平分線交于點Q3,此次類推,則∠EPF與∠EQ2018F滿足怎樣的數(shù)量關系?(直接寫出結果)

查看答案和解析>>

同步練習冊答案