【題目】ABC中,∠BAC90°,點(diǎn)DBC上一點(diǎn),將ABD沿AD翻折后得到AED,邊AE交射線BC于點(diǎn)F

1)如(圖1),當(dāng)AEBC時(shí),求證:DEAC

2)若∠C2B,∠BAD0x60

①如(圖2),當(dāng)DEBC時(shí),求x的值.

②是否存在這樣的x的值,使得DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)①15°,②x22.5°45°

【解析】

1)根據(jù)折疊的性質(zhì)得到∠B=∠E,根據(jù)平行線的判定定理證明;

2)①根據(jù)三角形內(nèi)角和定理分別求出∠C60°,∠B30°,根據(jù)折疊的性質(zhì)計(jì)算即可;

②分∠EDF=∠DFE、∠DFE=∠E、∠EDF=∠E三種情況,列方程解答即可.

1)證明:∵∠BAC90°AEBC,

∴∠CAF+BAF90°,∠B+BAF90°,

∴∠CAF=∠B,

由翻折可知,∠B=∠E,

∴∠CAF=∠E

ACDE;

2)①∵∠C2B,∠C+B90°

∴∠C60°,∠B30°,

DEBC,∠E=∠B30°

∴∠BFE60°,

∵∠BFE=∠B+BAF,

∴∠BAF30°

由翻折可知,x=∠BADBAF15°;

②∠BAD,則∠FDE=(1202x°,∠DFE=(2x+30°

當(dāng)∠EDF=∠DFE時(shí),1202x2x+30

解得,x22.5

當(dāng)∠DFE=∠E30°時(shí),2x+3030,

解得,x0,

0x60,

∴不合題意,故舍去,

當(dāng)∠EDF=∠E30°,1202x30

解得,x45,

綜上可知,存在這樣的x的值,使得DEF中有兩個(gè)角相等,且x22.545

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(m>0)與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,且點(diǎn)A在點(diǎn)B的左側(cè).

(1)若拋物線過(guò)點(diǎn)(2,2),求拋物線的解析式;

(2)在(1)的條件下,拋物線的對(duì)稱軸上是否存在一點(diǎn)H,使AH+CH的值最小,若存在,求出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在第四象限內(nèi),拋物線上是否存在點(diǎn)M,使得以點(diǎn)A,B,M為頂點(diǎn)的三角形與△ACB相似?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店從廠家選購(gòu)甲、乙兩種商品,乙商品每件進(jìn)價(jià)比甲商品每件進(jìn)價(jià)少20元,若購(gòu)進(jìn)甲商品5件和乙商品4件共需要1000元;

(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

(2)若甲種商品的售價(jià)為每件145元,乙種商品的售價(jià)為每件120元,該商店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤(rùn)不少于870元,則甲種商品至少可購(gòu)進(jìn)多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,平分,點(diǎn)上,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,點(diǎn)C和點(diǎn)M重合,點(diǎn)B、C(M)、N在同一直線上,令RtPMN不動(dòng),矩形ABCD沿MN所在直線以每秒1cm的速度向右移動(dòng),至點(diǎn)C與點(diǎn)N重合為止,設(shè)移動(dòng)x秒后,矩形ABCDPMN重疊部分的面積為y,則yx的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2BCD=120°,A的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.

(1)求線段BD的長(zhǎng);

(2)求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=a(x﹣1)2過(guò)點(diǎn)(3,1),D為拋物線的頂點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)B、C均在拋物線上,其中點(diǎn)B(0,),且∠BDC=90°,求點(diǎn)C的坐標(biāo);

(3)如圖,直線y=kx+4﹣k與拋物線交于P、Q兩點(diǎn).

①求證:∠PDQ=90°;

②求PDQ面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖形,回答下列各題:

(1)圖A中,共有____對(duì)對(duì)頂角;

(2)圖B中,共有____對(duì)對(duì)頂角;

(3)圖C中,共有____對(duì)對(duì)頂角;

(4)探究(1)--(3)各題中直線條數(shù)與對(duì)頂角對(duì)數(shù)之間的關(guān)系,若有n條直線相交于一點(diǎn),則可形成________對(duì)對(duì)頂角;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為,陰影三角形部分的面積從左向右依次記為、、、,則的值為______用含n的代數(shù)式表示,n為正整數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案