【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度數(shù);
(2)求證:CE=BH.
【答案】(1)22.5°;(2)見解析.
【解析】試題分析:(1)根據(jù)AE是角平分線,可得∠ACE的度數(shù),再根據(jù)直角三角形兩余角互余可得∠AEC的度數(shù),再由CH⊥AE即可得;
(2)證明CF=CE,再證明△ACF≌△CBH即可得.
試題解析:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=∠B=45°,
∵AE是△ABC的角平分線,
∴∠CAE=∠CAB=22.5°,
∴∠AEC=90°-∠CAE=67.5°,
∵CH⊥AE于G,
∴∠CGE=90°,
∴∠GCE=90°-∠AEC=22.5°;
(2)∵∠ACB=90°,AC=BC,CD是△ABC的高,
∴∠ACD=∠ACB=45°,
∴∠CFE=∠CAE+∠ACD=67.5°,
∴∠CFE=∠AEC,
∴CF=CE,
在△ACF和△CBH中,∴△ACF≌△CBH,∴CF=BH,
∴CE=BH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,則∠A4=( 。
A. 10° B. 15° C. 30° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的第二象限內(nèi)有一點(diǎn)M,它到x軸的距離為3,到y(tǒng)軸的距離為4,則點(diǎn)M的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn)、是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OM上一點(diǎn),點(diǎn)B為OP上一點(diǎn).請你利用該圖形在ON上找一點(diǎn)C,使△COB≌△AOB,請在圖①畫出圖形.參考這個作全等三角形的方法,解答下列問題:
(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請你寫出FE與FD之間的數(shù)量關(guān)系,并說明理由;
(3)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(2)中所得結(jié)論是否仍然成立?請你直接作出判斷,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果a,b互為相反數(shù),c,d互為倒數(shù),m的絕對值是3,則m2﹣2019a+5cd﹣2019b的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地欲搭建一橋,橋的底部兩端間的距離AB=L,稱跨度,橋面最高點(diǎn)到AB的距離CD=h稱拱高,當(dāng)L和h確定時,有兩種設(shè)計方案可供選擇:①拋物線型,②圓弧型. 已知這座橋的跨度L=32米,拱高h=8米.
(1)如果設(shè)計成拋物線型,以AB所在直線為x軸, AB的垂直平分線為y軸建立坐標(biāo)系,求橋拱的函數(shù)解析式;
(2)如果設(shè)計成圓弧型,求該圓弧所在圓的半徑;
(3)在距離橋的一端4米處欲立一橋墩EF支撐,在兩種方案中分別求橋墩的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 4 B. 6 C. 3 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com