如圖,直線y=kx+b交坐標(biāo)軸于A(﹣2,0),B(0,3)兩點,則不等式kx+b>0的解集是
A.x>3B.﹣2<x<3C.x<﹣2D.x>﹣2
D

試題分析:∵直線y=kx+b交x軸于A(﹣2,0),
∴不等式kx+b>0的解集是x>﹣2。
故選D!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,反比例函數(shù)與一次函數(shù)y=x+b的圖象,都經(jīng)過點A(1,2)

(1)試確定反比例函數(shù)和一次函數(shù)的解析式;
(2)求一次函數(shù)圖象與兩坐標(biāo)軸的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2013年四川南充3分) 如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個數(shù)為【   】
A.4B.3C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出一個圖形經(jīng)過一、三象限的正比例函數(shù)的解析式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一次函數(shù)y=kx+b經(jīng)過點A(1,3),B(﹣3,0),那么這個一次函數(shù)解析式為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

加工一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再停止加熱進行加工,設(shè)該材料溫度為y﹙℃﹚,從加熱開始計算的時間為x(分鐘).據(jù)了解,該材料在加熱時,溫度y是時間x的一次函數(shù),停止加熱進行加工時,溫度y與時間x成反比例關(guān)系(如圖所示),己知該材料在加熱前的溫度為l5℃,加熱5分鐘后溫度達(dá)到60℃.

(1)分別求出將材料加熱和加工時,y與x的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于l5℃時,必須停止加工,那么加工時間是多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知,函數(shù)y=3x的圖象經(jīng)過點A(﹣1,y1),點B(﹣2,y2),則y1     y2(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預(yù)計購進乙品牌文具盒的數(shù)量y(個)與甲品牌文具盒的數(shù)量x(個)之間的函數(shù)關(guān)系如圖所示.當(dāng)購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7200元.

(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進貨單價;
(3)若該超市每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過6300元購進甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進貨方案?哪種方案能使獲利最大?最大獲利為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是一種古代計時器﹣﹣“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺下的小孔漏出,壺壁內(nèi)畫出刻度,人們根據(jù)壺中水面的位置計算時間若用x表示時間,y表示壺底到水面的高度,下面的圖象適合表示一小段時間內(nèi)y與x的函數(shù)關(guān)系的是(不考慮水量變化對壓力的影響)
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案