如圖-1至圖-5,⊙O均作無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點時刻的位置,⊙O的周長為c.
閱讀理解:
(1)如圖-1,⊙O從⊙O1的位置出發(fā),沿AB滾動到 ⊙O2的位置,當AB = c時,⊙O恰好自轉1周.
(2)如圖-2,∠ABC相鄰的補角是n°,⊙O在∠ABC外部沿A-B-C滾動,在點B處,必須由 ⊙O1的位置旋轉到⊙O2的位置,⊙O繞點B旋轉的角∠O1BO2 = n°,⊙O在點B處自轉周.
實踐應用:
(1)在閱讀理解的(1)中,若AB = 2c,則⊙O自轉_____ 周;若AB = l,則⊙O自轉_____ 周.在閱讀理解的(2)中,若∠ABC = 120°,則⊙O 在點B處自轉_____ 周;若∠ABC = 60°,則⊙O 在點B處自轉_____ 周.
(2)如圖-3,∠ABC=90°,AB=BC=c.⊙O從 ⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動到⊙O4的位置,⊙O自轉_____ 周.
 拓展聯(lián)想:
(3)如圖-4,△ABC的周長為l,⊙O從與AB相切于點D的位置出發(fā),在△ABC外部,按順時針方向沿三角形滾動,又回到與AB相切于點D的位置,⊙O自轉了多少周?請說明理由.
(4)如圖-5,多邊形的周長為l,⊙O從與某邊相切于點D的位置出發(fā),在多邊形外部,按順時針方向沿多邊形滾動,又回到與該邊相切于點D的位置,直接寫出⊙O自轉的周數(shù).
解:實踐應用
(1)2;;
(2)
拓展聯(lián)想
(3)∵△ABC的周長為l,
∴⊙O在三邊上自轉了周.
又∵三角形的外角和是360°,
∴在三個頂點處,⊙O自轉了(周).
∴⊙O共自轉了(+1)周.
(4)+1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.
思考
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α.
當α=
 
度時,點P到CD的距離最小,最小值為
 

探究一
在圖1的基礎上,以點M為旋轉中心,在AB,CD 之間順時針旋轉該半圓形紙片,直到不能再轉動為止,如圖2,得到最大旋轉角∠BMO=
 
度,此時點N到CD的距離是
 

探究二
將如圖1中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順時針旋轉.
(1)如圖3,當α=60°時,求在旋轉過程中,點P到CD的最小距離,并請指出旋轉角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在如圖1至圖3中,△ABC的面積為a.

(1)如圖1,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示),并寫出理由;
(3)在圖2的基礎上延長AB到點F,使BF=AB,連接FD、FE,得到△DEF(如圖3),若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示);
(4)像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點,得到△DEF(如圖3),此時,我們稱△ABC向外擴展了一次.可以發(fā)現(xiàn),擴展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探索:在圖1至圖3中,已知△ABC的面積為a,
(1)如圖1,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示)
(2)如圖2,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示)
(3)在圖2的基礎上延長AB到點F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示),并運用上述(2)的結論寫出理由.
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點,得到△DEF(如圖3),此時,我們稱△ABC向外擴展了一次.可以發(fā)現(xiàn),擴展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應用:要在一塊足夠大的空地上栽種花卉,工程人員進行了如下的圖案設計:首先在△ABC的空地上種紅花,然后將△ABC向外擴展三次(圖4已給出了前兩次擴展的圖案).在第一次擴展區(qū)域內種謊話,第二次擴展區(qū)域內種紫花,第三次擴展區(qū)域內種藍花.如果種紅花的區(qū)域(即△ABC)的面積是10平方米,請你運用上述結論求出:
(1)種紫花的區(qū)域的面積;
(2)種藍花的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2006•河北)探索:
在如圖1至圖3中,△ABC的面積為a.

(1)如圖1,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示);
(3)在圖2的基礎上延長AB到點F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示).
發(fā)現(xiàn):
像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點,得到△DEF(如圖3),此時,我們稱△ABC向外擴展了一次.可以發(fā)現(xiàn),擴展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應用:
去年在面積為10m2的△ABC空地上栽種了某種花卉.今年準備擴大種植規(guī)模,把△ABC向外進行兩次擴展,第一次由△ABC擴展成△DEF,第二次由△DEF擴展成△MGH(如圖4).則這兩次擴展的區(qū)域(即陰影部分)面積共為
480
480
m2

查看答案和解析>>

科目:初中數(shù)學 來源:遼寧省葫蘆島市2011年初中畢業(yè)生升學文化課考試數(shù)學試卷 題型:059

如圖(1)至圖(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,點B、C、E在同一條直線上.

(1)已知:如圖(1),AC=AB,AD=AE.求證:①CD=BE;②CD⊥BE.

(2)如圖(2),當AB=kAC,AE=kAD(k≠1)時,分別說出(1)中的兩個結論是否成立,若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案