【題目】已知拋物線y=ax2+bx+3經(jīng)過A(3,0),B(1,0)兩點(如圖1),頂點為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點為Q(如圖1),直線y=2x+9與直線OM交于點D. 現(xiàn)將拋物線平移,保持頂點在直線OD上.當拋物線的頂點平移到D點時,Q點移至N點,求拋物線上的兩點M、Q間所夾的曲線MQ掃過的區(qū)域的面積;
(3)設(shè)直線y=2x+9與y軸交于點C,與直線OM交于點D(如圖2).現(xiàn)將拋物線平移,保持頂點在直線OD上.若平移的拋物線與射線CD(含端點C)沒有公共點時,試探求其頂點的橫坐標h的取值范圍.
【答案】(1)a=1,b=4;(2)MQ掃過的面積為;(3)或
【解析】
(1)將A、B兩點的坐標代入拋物線的解析式中,即可求出待定系數(shù)的值.
(2)連接MQ、DN后,由圖可以發(fā)現(xiàn)曲線MQ掃過的面積正好是MQND的面積;連接QD,則MQND的面積是兩倍的△MQD的面積,所以這道題實際求的是△MQD的面積;由(1)的拋物線解析式,不難求出頂點M的坐標,聯(lián)立直線OM和直線CD的解析式可以求出點D的坐標;以OQ為底,M、D兩點的橫坐標差的絕對值為高即可得△MQD的面積,則此題可求.
(3)在平移過程中,拋物線的開口方向和大小是不變的,即二次項系數(shù)不變;拋物線的頂點始終在直線OM上,根據(jù)直線OM的解析式(y=x)可表達出拋物線頂點的坐標(h,h),可據(jù)此先設(shè)出平移后的拋物線解析式;若求平移的拋物線與射線CD(含端點C)沒有公共點時頂點橫坐標的取值范圍,那么就要考慮到兩個關(guān)鍵位置:
①拋物線對稱軸右側(cè)部分經(jīng)過C點時,拋物線頂點橫坐標h的值;
②拋物線對稱軸左側(cè)部分與直線CD恰好有且只有一個交點時,h的值;
解:(1)將A(-3,0),B(-1,0)代入拋物線y=ax2+bx+3中,得:
,
解得:a=1、b=4.
(2)連接MQ、QD、DN,
由圖形平移的性質(zhì)知:QN∥MD,即四邊形MQND是平行四邊形;
由(1)知,拋物線的解析式:y=x2+4x+3=(x+2)2-1,則點M(-2,-1),
當x=0時,y=3,
∴Q(0,3);
設(shè)直線OM的解析式為y=kx,
∴-2k=-1,
∴k=,
∴直線OM:y=x,聯(lián)立直線y=-2x+9,得:
,
解得
.
則D();
曲線QM掃過的區(qū)域的面積:S=SMQND=2S△MQD;
(3)由于拋物線的頂點始終在y=x上,可設(shè)其坐標為(h,h),設(shè)平移后的拋物線解析式為y=
①當平移后拋物線對稱軸右側(cè)部分經(jīng)過點C(0,9)時,有:
h2+h=9,解得:h=(依題意,舍去正值)
②當平移后的拋物線與直線y=-2x+9只有一個交點時,依題意:
,
消去y,得:x2-(2h-2)x+h2+h-9=0,
則:△=(2h-2)2-4(h2+h-9)=-10h+40=0,解得:h=4,
結(jié)合圖形,當平移的拋物線與射線CD(含端點C)沒有公共點時,h<或h>4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙,丙三個球迷決定通過抓鬮來確定誰得到僅有的一張球票,他們準備了三張紙片,紙片上分別寫上,然后將紙片折疊成外觀一致的紙團,抓到紙片的人可以得到球票.
(1)如果讓甲從三張紙團中先抓一張,則甲一次就抓到寫的紙片的概率為 (直接寫出答案);
(2)抓鬮前,乙產(chǎn)生了疑問:“誰先抓?先抓的人會不會抓中的機會比別人大?”你認為乙的懷疑有沒有道理?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設(shè)拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(不與點A、B重合),
①如圖2,若點P在直線AB上方,連接OP交AB于點D,求的最大值;
②如圖3,若點P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點E或F恰好落在y軸上,直接寫出對應的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→C和B→C→D方向運動至相遇時停止.設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的個數(shù)有( )
①當t=4秒時,S=;②AD=4;③當4≤t≤8時,S=;④當t=9秒時,BP平分梯形ABCD的面積.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計,當每輛車的月租金為3000元時,可全部租出.每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達到306600元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從A點開始沿AB邊向點B以1cm/秒的速度移動,同時點Q從B點開始沿BC邊向點C以2cm/秒的速度移動,且當其中一點到達終點時,另一個點隨之停止移動.
(1)P,Q兩點出發(fā)幾秒后,可使△PBQ的面積為8cm2.
(2)設(shè)P,Q兩點同時出發(fā)移動的時間為t秒,△PBQ的面積為Scm2,請寫出S與t的函數(shù)關(guān)系式,并求出△PBQ面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形OABC的邊長為5,且tan∠AOC=,點E是線段BC的中點,過點A、E的拋物線y=ax2+bx+c與邊AB交于點D.
(1)求點A和點E的坐標;
(2)連結(jié)DE,將△BDE沿著DE翻折.
①當點B的對應點B'恰好落在線段AC上時,求點D的坐標;
②連接OB、BB',請直接寫出此時該拋物線二次項系數(shù)a= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com