【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象與正比例函數(shù)y=kx(k0)的圖象相交于橫坐標(biāo)為2的點A,平移直線OA,使它經(jīng)過點B(3,0),與y軸交于點C.

(1)求平移后直線的表達(dá)式;

(2)求OBC的余切值.

【答案】(1)y=2x﹣6;(2)

【解析】

試題分析:(1)根據(jù)點A在反比例函數(shù)圖象上可求出點A的坐標(biāo),進而可求出正比例函數(shù)表達(dá)式,根據(jù)平移的性質(zhì)可設(shè)直線BC的函數(shù)解析式為y=2x+b,根據(jù)點B的坐標(biāo)利用待定系數(shù)法即可求出b值,此題得解;

(2)利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點C的坐標(biāo),從而得出OC的值,再根據(jù)余切的定義即可得出結(jié)論.

試題解析:(1)當(dāng)x=2時,y==4,點A的坐標(biāo)為(2,4).

A(2,4)在y=kx(k0)的圖象上,4=2k,解得:k=2.

設(shè)直線BC的函數(shù)解析式為y=2x+b,點B的坐標(biāo)為(3,0),0=2×3+b,解得:b=﹣6,平移后直線的表達(dá)式y(tǒng)=2x﹣6.

(2)當(dāng)x=0時,y=﹣6,點C的坐標(biāo)為(0,﹣6),OC=6,∴cotOBC===

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列數(shù)學(xué)表達(dá)式中是不等式的是(  )

A. 5x=4 B. 2x+5y

C. 6<2x D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的內(nèi)角和是540°,則這個多邊形是邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中,正確的是( )

A. (﹣x2x3x5B. x2y3x6y

C. a+b2a2+b2D. a6+a3a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A﹣2,4),B4,2),C2,﹣1

1)作ABC關(guān)于x軸的對稱圖形A1B1C1,寫出點C關(guān)于x軸的對稱點C1的坐標(biāo);

2Px軸上一點,請在圖中畫出使PAB的周長最小時的點P并直接寫出此時點P的坐標(biāo)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,A=50°

(1)如圖,ABC、ACB的角平分線交于點O,則BOC= °

(2)如圖,ABC、ACB的三等分線分別對應(yīng)交于O1、O2,則BO2C= °

(3)如圖ABC、ACB的n等分線分別對應(yīng)交于O1、O2On1(內(nèi)部有n1個點),求BOn1C(用n的代數(shù)式表示).

(4)如圖,已知ABC、ACB的n等分線分別對應(yīng)交于O1、O2On1,若BOn1C=60°,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=1是方程a(x﹣2)=a+2x的解,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索發(fā)現(xiàn):
如圖1,已知直線l1∥l2 , 且l3和l1、l2分別相交于A、B兩點,l4和l1、l2分別交于C、D兩點,∠ACP記作∠1,∠BDP記作∠2,∠CPD記作∠3.點P在線段AB上.

(1)若∠1=20°,∠2=30°,請你求出∠3的度數(shù).
(2)請你根據(jù)上述問題,請你找出圖1中∠1、∠2、∠3之間的數(shù)量關(guān)系,并直接寫出你的結(jié)論.
(3)應(yīng)用(2)中的結(jié)論解答下列問題:如圖2,點A在B的北偏東 40°的方向上,在C的北偏西45°的方向上,請你根據(jù)上述結(jié)論直接寫出∠BAC的度數(shù).
拓展延伸:
(4)如果點P在直線l3上且在A、B兩點外側(cè)運動時,其他條件不變,試探究∠1、∠2、∠3之間的關(guān)系(點P和A、B兩點不重合),寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x+y=5,xy=-6,則x2+y2的值是(  )

A. 19 B. 31 C. 37 D. 41

查看答案和解析>>

同步練習(xí)冊答案