【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點(diǎn)DAB邊上的一點(diǎn),

(1)試說明:∠EAC=∠B ;

(2)若AD=15,BD=36,求DE的長.

(3)若點(diǎn)DA、B之間移動(dòng),當(dāng)點(diǎn)D為 時(shí),ACDE互相平分.

(直接寫出答案,不必說明理由)

【答案】(1)證明見解析(2)39 (3)AB的中點(diǎn)

【解析】試題分析

1)先由∠ACB∠ECD90可得∠ECA=∠DCB,再由“SAS”證△ECA≌△DCB可得結(jié)論;

2)由△ECA≌△DCB可得:AE=BD=36,∠EAC=∠B=45°可證∠DAE=90°從而得到△ADE是直角三角形,再由勾股定理可求得DE的長;

3如圖,若ACDE互相平分,由DCE=90°,易得CO=AO=DE=OD=OE,從而可得ODA=OAD=45°,并由此得到∠DOA=90°再證△COD為等腰直角三角形,可得∠CDO=45°,這樣CDA=CDO+ODA=90°,即CDAB,∴點(diǎn)DAB的中點(diǎn).

試題解析

1∵∠ACB=∠ECD=90°

∴∠ACB-∠ACD =∠ECD-∠ACD,

∴∠ECA∠DCB ,

∵△ACB△ECD都是等腰三角形

∴ECDC,ACBC,

∴△ACE≌△BCD

∴∠EAC∠B.

2∵△ACE≌△BCD,

∴AEBD36

∵∠EAC∠B45 °,

∴∠EAD∠EAC∠CAD90°,

RtADE中,

∴DE2=152+362 ,

∴DE39.

3)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),ACDE互相平分,理由如下

∵AC=BC,DAB中點(diǎn),∠ACB=90°,

CD=AB=ADCDA=90°,

∴∠DCA=∠DAC=45°,

∵∠ECD=90°

∴∠ECO=45°=∠DCA,

∵CD=CE,

∴CO為△DCE的中線.

∵∠CDA=90°∠CDE=45°,

∴∠ODA=45°=∠CDE,

又∵CD=AD,

∴DO△ADC的中線.

∴ACDE互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師對她所教學(xué)生的學(xué)習(xí)興趣進(jìn)行了一次抽樣調(diào)查,她把學(xué)生的學(xué)習(xí)興趣分為三個(gè)層次:很感興趣;較感興趣和不感興趣;并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計(jì)圖(不完整).請你根據(jù)圖中提供的信息,幫助李老師解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中填上百分?jǐn)?shù);

(3)求圖②中表示“不感興趣”部分的扇形所對的圓心角;

(4)根據(jù)抽樣調(diào)查的結(jié)果,請你估計(jì)李老師所在的學(xué)校800名學(xué)生中大約有多少名學(xué)生對學(xué)習(xí)感興趣(包括“很感興趣”和“較感興趣”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線yx2向左平移2個(gè)單位,再向下平移5個(gè)單位,則平移后所得新拋物線的表達(dá)式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某計(jì)算裝置有一數(shù)據(jù)的入口A和一運(yùn)算結(jié)果的出口B.
下表是小剛輸入一些數(shù)后所得的結(jié)果:

A

0

1

4

9

16

25

36

B

﹣2

﹣1

0

1

2

3

4

(1)若輸出的數(shù)是5,則小剛輸入的數(shù)是多少?
(2)若小剛輸入的數(shù)是225,則輸出的結(jié)果是多少?
(3)若小剛輸入的數(shù)是n(n≥10),你能用含n的式子表示輸出的結(jié)果嗎?試一試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣(a﹣b+c)變形后的結(jié)果是(
A.﹣a+b+c
B.﹣a+b﹣c
C.﹣a﹣b+c
D.﹣a﹣b﹣c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)四邊形的周長是48厘米,已知第一條邊長a厘米,第二條邊比第一條邊的2倍長3厘米,第三條邊等于第一、二兩條邊的和,寫出表示第四條邊長的整式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1是關(guān)于x的方程x2mx30的一個(gè)根,則另一個(gè)根為__,m__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架2.5米長的梯子斜立在豎直的墻上,此時(shí)梯足B距底端O0.7米。(1)求OA的長度。(2)如果梯子頂端下滑0.4米,則梯子將滑出多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1:在四邊形ABCD中,ABAD,BAD120°,BADC90°EF分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   ;

探索延伸:

如圖2,若在四邊形ABCD中,ABADBD180°E、F分別是BCCD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

同步練習(xí)冊答案