【題目】(本題滿分12分)在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-3,0)、B(4,0)兩點,且與y軸交于點C,點D在x軸的負(fù)半軸上,且BD=BC,有一動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度向點B移動,同時另一個動點Q從點C出發(fā),沿線段CA以某一速度向點A移動.
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動,線段PQ被CD垂直平分,求此時t的值;
(3)該拋物線的對稱軸上是否存在一點M,使MQ+MA的值最小?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式為 .(2)t的值為.(3)在拋物線的對稱軸上存在一點M( , ),使得MQ+MA的值最小.
【解析】解:(1)∵拋物線經(jīng)過A(-3,0),B(4,0)兩點,
∴ 解得
∴所求拋物線的解析式為.
(2)如圖,依題意知AP=t,連接DQ,
由A(-3,0),B(4,0),C(0,4),
可得AC=5,BC= ,AB=7.
∵BD=BC,
∴ .
∵CD垂直平分PQ,∴QD=DP,∠CDQ= ∠CDP.
∵BD=BC,∴∠DCB= ∠CDB.
∴∠CDQ= ∠DCB.∴DQ∥BC.
∴△ADQ∽△ABC.∴ .∴ .
∴ .解得 .
∴ .
∴線段PQ被CD垂直平分時,t的值為 .
(3)設(shè)拋物線的對稱軸 與x軸交于點E.
點A、B關(guān)于對稱軸 對稱,連接BQ交該對稱軸于點M.
則 ,即.
當(dāng)BQ⊥AC時,BQ最小.
此時,∠EBM= ∠ACO.
∴ .
∴ .∴ ,
解得ME=.
∴M(, ).
即在拋物線的對稱軸上存在一點M( , ),使得MQ+MA的值最小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點F,交∠ACB內(nèi)角平分線CE于E.
(1)試說明EO=FO;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形并證明你的結(jié)論;
(3)若AC邊上存在點O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( 。
A.點P(3,2)到x軸距離是3
B.在平面直角坐標(biāo)系中,點(2,﹣3)和點(﹣2,3)表示同一個點
C.若y=0,則點M(x,y)在y軸上
D.在平面直角坐標(biāo)系中,第三象限內(nèi)點的橫坐標(biāo)與縱坐標(biāo)同號
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】擲一枚正方體的骰子,各個面上分別標(biāo)有數(shù)字1, 2,3,4,5,6,求下列事件發(fā)生的頻率的大。
①朝上的數(shù)字是奇數(shù);
②朝上的數(shù)字能被3除余1;
③朝上的數(shù)字不是3的倍數(shù);
④朝上的數(shù)字小于6;
⑤朝上的數(shù)字不小于3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,E、F分別在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一點,且∠BGD=120°,連接EF、BG、FG、EF、BG交于點H,則下面結(jié)論:①DE=DF;②△BEF是等邊三角形;③∠BGF=45°;④BG=EG+FG中,正確的是(請?zhí)罘枺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班40位同學(xué)的年齡如表所示:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù) | 3 | 16 | 19 | 2 |
則該班40名同學(xué)年齡的眾數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com