【題目】已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一個(gè)根與方程(a+1)x2+ax﹣a2+a+2=0的一個(gè)根互為相反數(shù),那么(a+1)x2+ax﹣a2+a+2=0的根是( 。
A. 0,﹣ B. 0, C. ﹣1,2 D. 1,﹣2
【答案】A
【解析】
將x0、﹣x0分別代入已知的兩個(gè)方程,求出a的值,再將a的值代入要求解的方程,解方程即可.
設(shè)x0為方程(a+1)x2﹣ax+a2﹣a﹣2=0的一個(gè)根,則﹣x0為方程(a+1)x2+ax﹣a2+a+2=0的一個(gè)根,
∴(a+1)x02﹣a x0+a2﹣a﹣2=0①,
(a+1)x02﹣a x0﹣a2+a+2=0②,
∴①﹣②得:2a2﹣2a﹣4=0,即a2﹣a﹣2=0,
解得a=2或﹣1,
當(dāng)a=2時(shí),3x2+2x=0,解得x=0或﹣;
②當(dāng)a=﹣1時(shí),﹣x﹣1﹣1+2=0,解得x=0.
∴方程的解是0或﹣.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且
AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三階幻方是由1,2,3,4,5,6,7,8,9九個(gè)數(shù)字組成的一個(gè)三行三列的數(shù)表,要求其對(duì)角線、橫行、縱向的和都相等。即為15,稱這個(gè)幻方的幻和為15。四階幻方是由1,2,3,……,15,16十六個(gè)數(shù)組成一個(gè)四行四列的數(shù)表,其對(duì)角線、橫向、縱向的和都為同一個(gè)數(shù),此數(shù)稱為四階幻方的幻和,那么此四階幻方的幻和等于_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)在直線上運(yùn)動(dòng),當(dāng)線段最短時(shí),點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地間的直線公路長(zhǎng)為千米.一輛轎車和一輛貨車分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車比轎車早出發(fā)小時(shí),途中轎車出現(xiàn)了故障,停下維修,貨車仍繼續(xù)行駛.小時(shí)后轎車故障被排除,此時(shí)接到通知,轎車立刻掉頭按原路原速返回甲地(接到通知及掉頭時(shí)間不計(jì)).最后兩車同時(shí)到達(dá)甲地,已知兩車距各自出發(fā)地的距離(千米)與轎車所用的時(shí)間(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)貨車的速度是_______千米/小時(shí);轎車的速度是_______千米/小時(shí);值為_______.
(2)求轎車距其出發(fā)地的距離(千米)與所用時(shí)間(小時(shí))之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(3)請(qǐng)直接寫出貨車出發(fā)多長(zhǎng)時(shí)間兩車相距千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某小區(qū)小孩暑期的學(xué)習(xí)情況,王老師隨機(jī)調(diào)查了該小區(qū)8個(gè)小孩某天的學(xué)習(xí)時(shí)間,結(jié)果如下(單位:小時(shí)):1.5,1.5,3,4,2,5,2.5,4.5,關(guān)于這組數(shù)據(jù),下列結(jié)論錯(cuò)誤的是( 。
A. 極差是3.5 B. 眾數(shù)是1.5 C. 中位數(shù)是3 D. 平均數(shù)是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過(guò)點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣5).
(1)求拋物線l2的函數(shù)表達(dá)式;
(2)P為直線x=1上一動(dòng)點(diǎn),連接PA、PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線l2上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線MN∥y軸(如圖2所示),交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過(guò)程中,線段MN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,正方形ABCD的邊AB在x軸上,A(﹣4,0),B(﹣2,0),定義:若某個(gè)拋物線上存在一點(diǎn)P,使得點(diǎn)P到正方形ABCD四個(gè)頂點(diǎn)的距離相等,則稱這個(gè)拋物線為正方形ABCD的“友好拋物線”.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好拋物線”,則n的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A﹙-2,-5﹚、C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA、OC,求△AOC的面積;
(3)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com