【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CB交x軸于點(diǎn)A1 , 作正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2 , 作正方形A2B2C2C1 , …按這樣的規(guī)律進(jìn)行下去,第2017個正方形的面積為 .
【答案】5×( )4032
【解析】解:設(shè)正方形的面積分別為S1,S2…,Sn,
根據(jù)題意,得:AD∥BC∥C1A2∥C2B2,
∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).
∵∠ABA1=∠A1B1A2=∠A2B2x=90°,
∴△BAA1∽△B1A1A2,
在直角△ADO中,根據(jù)勾股定理,得:AD= ,tan∠ADO= = ,
∵tan∠BAA1= =tan∠ADO,
∴BA1= AB= ,
∴CA1= + ,
同理,得:C1A2=( + )×(1+ ),
由正方形的面積公式,得:S1=( )2=5,
S2=( )2×(1+ )2,
S3=( )2×(1+ )4=5×( )4,
由此,可得S2017=( )2×(1+ )2×2016=5×( )4032.
故答案為:5×( )4032.
首先證明△AA1B∽△A1A2B1,從而可得到∠BAA1=∠B1A1A2,然后利用勾股定理計算出正方形的邊長,最后利用正方形的面積公式計算第一個正方形的面積,從中找出規(guī)律,然后依據(jù)規(guī)律可求出第n個正方形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠MON=60°,A、B兩點(diǎn)同時從點(diǎn)O出發(fā),點(diǎn)A以每秒x個單位長度沿射線ON勻速運(yùn)動,點(diǎn)B以每秒y個單位長度沿射線OM勻速運(yùn)動.
(1)若運(yùn)動1s時,點(diǎn)A運(yùn)動的路程比點(diǎn)B運(yùn)動路程的2倍還多1個單位長度,運(yùn)動3s時,點(diǎn)A、點(diǎn)B的運(yùn)動路程之和為12個單位長度,則x=____,y=____;
(2)如圖2,點(diǎn)C為△ABO三條內(nèi)角平分線交點(diǎn),連接BC、AC,在點(diǎn)A、B的運(yùn)動過程中,∠ACB的度數(shù)是否發(fā)生變化?若不發(fā)生變化,求其值;若發(fā)生變化,請說明理由;
(3)如圖3,在(2)的條件下,連接OC并延長,與∠ABM的角平分線交于點(diǎn)P,與AB交于點(diǎn)Q.
①試說明∠PBQ=∠ACQ;
②在△BCP中,如果有一個角是另一個角的2倍,請直接寫出∠BAO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠準(zhǔn)備購買A、B兩種零件,已知A種零件的單價比B種零件的單價多30元,而用900元購買A種零件的數(shù)量和用600元購買B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價;
(2)根據(jù)需要,工廠準(zhǔn)備購買A、B兩種零件共200件,工廠購買兩種零件的總費(fèi)用不超過14700元,求工廠最多購買A種零件多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是線段DE上一點(diǎn),∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,BD、CE、DE有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請直接寫出當(dāng)x<m時,y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,D為AB上一點(diǎn),連接CD.
(1)如圖1,若∠BCA=90°,CD⊥AB,則=______(直接寫出結(jié)果).
(2)如圖2,若BD=AC,E為CD的中點(diǎn),AE與BC存在怎樣的數(shù)量關(guān)系,判斷并說明理由;
(3)如圖3,CD平分∠ACB,BF平分∠ABC,交CD于F.若BF=AC,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接濟(jì)川中學(xué)紅歌演講比賽,濟(jì)川校區(qū)七年級(15)(16)班決定訂購?fù)惶追b,兩班一共有103人(15班人數(shù)多于16班),經(jīng)協(xié)商,某服裝店給出的價格如下:
購買人數(shù)/人 | 1~50人 | 50~100人 | 100以上人 |
每套服裝價格/元 | 50 | 45 | 40 |
例如:若購買人數(shù)為60人,則購買共需花費(fèi)60×45=2700元.
(1)如果兩個班都以班為單位分別購買,則一共需花費(fèi)4875元,那么15,16班各有多少名學(xué)生?
(2)如果兩個班聯(lián)合起來,做為一個整體購買,則能節(jié)省多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B地如圖是汽車行駛時離C站的路程千米與行駛時間小時之間的函數(shù)關(guān)系的圖象.
填空:______km,AB兩地的距離為______km;
求線段PM、MN所表示的y與x之間的函數(shù)表達(dá)式;
求行駛時間x在什么范圍時,小汽車離車站C的路程不超過60千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com