【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作!毒耪滤阈g(shù)》中記載:“今有五省、六燕,集稱之衡,雀俱重,燕俱輕,一雀一燕交而處,衡適平。并燕、雀重一斤。問燕,雀一枚各重幾何?”譯文:“今有只雀、只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤。問雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)

【答案】雀、燕每1只各重 斤、斤.

【解析】

設(shè)雀、燕每只各重x斤、y斤,根據(jù)等量關(guān)系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.

解:設(shè)雀、燕每只各重x斤、y斤,
由題意得,,解得:,
答:雀、燕每只各重 斤、斤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點E在正方形邊上(不與點BC重合),是對角線,延長到點F,使,過點E的垂線,垂足為G,連接,

1)根據(jù)題意補全圖形,并證明;

2用等式表示線段的數(shù)量關(guān)系,并證明;

用等式表示線段,之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)運算是數(shù)學(xué)學(xué)科核心素養(yǎng)之一,某校對七年級學(xué)生數(shù)學(xué)運算能力情況進行調(diào)研,從該校360名七年級學(xué)生中抽取了部分學(xué)生進行運算能力測試井進行分析,成績分為A、B、C三個層次,繪制了頻數(shù)分布表(如下),請根據(jù)圖表信息解答下列問題:

1)補全頻數(shù)分布;

2)如果成績?yōu)?/span>A等級的同學(xué)屬于優(yōu)秀,請你估計該校七年級約有多少人達到優(yōu)秀水平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC平分∠MON,POC上一點,PAOM,PBON,垂足分別為A、B,連接AB,得到以下結(jié)論:(1PA=PB;(2OA=OB;(3OPAB互相垂直平分;(4OP平分∠APB,正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

探究一:如圖1.在△ABC中,已知OABCACB的平分線BOCO的交點,通過分析發(fā)現(xiàn).理由如下:

BOCO分別是ABC與∠ACB的平分線,

,;

,

1)探究二:如圖2中,已知OABC與外角ACD的平分線BOCO的交點,試分析BOCA有怎樣的關(guān)系?并說明理由.

2)探究二:如圖3中,已知O是外角DBC與外角ECB的平分線BOCO的交點,試分析BOCA有怎樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)舉行“互聯(lián)網(wǎng)+”征文比賽,已知每篇參賽征文成績記,組委會從篇征文中隨機抽取了部分參賽征文,統(tǒng)計了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表:

請根據(jù)以上信息,解決下列問題:

1)征文比賽成績頻數(shù)分布表中的值是 ;

2)請求出的值,再補全征文比賽成績頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計圖,分別計算分數(shù)段,所對應(yīng)扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上任意一點(BEDE),CE的延長線交AD于點F,連接AE

1)求證:ABE∽△FDE;

2)當BE=3DE時,求tan1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情景:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

(1)天天同學(xué)看過圖形后立即口答出:∠APC=110°,請你補全他的推理依據(jù).

如圖2,過點PPEAB,

ABCD

PEABCD.(___)

∴∠A+APE=180°.

C+CPE=180°.(___)

∵∠PAB=130°,PCD=120°,

∴∠APE=50°,CPE=60°

∴∠APC=APE+CPE=110°.(___)

問題遷移:

(2)如圖3,ADBC,當點PA. B兩點之間運動時,∠ADP=α,∠BCP=β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由。

(3)(2)的條件下,如果點PA. B兩點外側(cè)運動時(P與點A. B. O三點不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):

如圖①'在正方形ABCD中,過A點有直線AP,點B關(guān)于AP的對稱點為E,連接DE交AP于點F,當∠BAP=20°時,則∠AFD= °;當∠BAP=α°(0<α<45°)時,則∠AFD= °;猜想線段DF, EF, AF之間的數(shù)量關(guān)系:DF-EF= AF(填系數(shù));

(2)數(shù)學(xué)思考:

如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD= °;線段DF, EF, AF之間的數(shù)量關(guān)系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關(guān)系并說明理由;

(3)類比探究:

如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD= °;請直接寫出線段DF,EF,AF之間的數(shù)量關(guān)系: .

查看答案和解析>>

同步練習(xí)冊答案