【題目】在下列說法中是錯誤的是(
A.在△ABC中,若∠A:∠B:∠C=5:2:3,則△ABC為直角三角形
B.在△ABC中,∠C=∠A﹣∠B,則△ABC為直角三角形
C.在△ABC中,若a= c,b= c,則△ABC為直角三角形
D.在△ABC中,若a:b:c=2:2:4,則△ABC為直角三角形

【答案】D
【解析】解:A、∵在△ABC中,∠A:∠B:∠C=5:2:3, ∴∠A= ×180°=90°,
∴△ABC為直角三角形,故本選項(xiàng)錯誤;
B、∵在△ABC中,∠C=∠A﹣∠B,
∴∠A=∠B+∠C,
∵∠A+∠B+∠C=180°,
∴∠A=90°,
∴△ABC為直角三角形,故本選項(xiàng)錯誤;
C、∵在△ABC中,a= c,b= c,
∴a2+b2=c2 ,
∴∠C=90°,
∴△ABC是直角三角形,故本選項(xiàng)錯誤;
D、∵在△ABC中,a:b:c=2:2:4,
∴a2+b2≠c2 ,
∴△ABC不是直角三角形,故本選項(xiàng)正確;
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)M是二次函數(shù)(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0,),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個圓上,圓心Q的縱坐標(biāo)為

(1)求a的值;

(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時,求點(diǎn)M和點(diǎn)Q的坐標(biāo);

(3)當(dāng)點(diǎn)M在第一象限時,過點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(x+7)(x﹣6)﹣(x﹣2)(x+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個算式:(1)(x44=x4+4=x8;(2)[(y22]2=y2×2×2=y8;(3)(﹣y23=y6;(4)[(﹣x)3]2=(﹣x)6=x6
其中正確的有(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo);

(2)畫出ABC繞點(diǎn)A按逆時針旋轉(zhuǎn)90°后的AB2C2,并寫出點(diǎn)C的對應(yīng)點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,AC=3,BC=4,AB=5,點(diǎn)P在AB上(不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連結(jié)EF,M為EF的中點(diǎn),則CM的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2a﹣3b2=5,則6﹣2a+3b2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(x,y)向左平移5個單位長度,再向上平移3個單位長度后與點(diǎn)B(﹣3,2)重合,則點(diǎn)A的坐標(biāo)是(
A.(2,5)
B.(﹣8,5)
C.(﹣8,﹣1)
D.(2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△EAF=15°,AB=BC=CD=DE=EF,則∠DEF等于(
A.90°
B.75°
C.70°
D.60°

查看答案和解析>>

同步練習(xí)冊答案