【題目】越來越多的人用微信聊天、轉(zhuǎn)賬、付款等.把微信賬戶里的錢轉(zhuǎn)到銀行卡叫做提現(xiàn).自201631日起,每個微信賬戶有1000元的免費提現(xiàn)額度,當(dāng)累計提現(xiàn)超過這個額度時,超出的部分需要付0.1%的手續(xù)費.

1)小明的媽媽從未提現(xiàn)過,此時想把微信零錢里的15000元提現(xiàn),那么將收取手續(xù)費   元;

2)小亮自201631日至今,用自己的微信賬戶共提現(xiàn)3次,3次提現(xiàn)金額和手續(xù)費分別如下:

第一次提現(xiàn)

第二次提現(xiàn)

第三次提現(xiàn)

提現(xiàn)金額(元)

a

b

3a+2b

手續(xù)費(元)

0

0.4

3.4

①二元一次方程組的相關(guān)知識求表中ab的值;

②小明3次提現(xiàn)金額共計   元.

【答案】114;(2)①a的值為600,b的值為800;②4800

【解析】

1)用15000元減去免費提額度1000元所得的數(shù)乘以手續(xù)費費率即可得;

2)①根據(jù)第二、三次提現(xiàn)的金額與手續(xù)費列出方程組,然后求解即可;

②將第一、二、三次提現(xiàn)金額求和即可.

1)由題意得:(元)

故答案為:14;

2)①由題意得:

解得:

a的值為600,b的值為800

②由題意得,所求的金額為:(元)

將①中ab的值代入得:(元)

故答案為:4800.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題探究:如圖,在四邊形ABCD中,ABCD,EBC的中點,AE是∠BAD的平分線,則線段ABAD,DC之間的等量關(guān)系為   ;

2)方法遷移:如圖,在四邊形ABCD中,ABCD,AFDC的延長線交于點FEBC的中點,AE是∠BAF的平分線,試探究線段AB,AFCF之間的等量關(guān)系,并證明你的結(jié)論;

3)聯(lián)想拓展:如圖,ABCF,EBC的中點,點D在線段AE上,∠EDF=∠BAE,試探究線段ABDF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠ABC30°.過點BDBABCA的延長線于點D,過點CCEACBA的延長線于點E,點FAE的中點,連接CF

1)求證:DBA≌△ECA;

2CAF是等邊三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于ab定義兩種新運算“*”a*ba+kb,abka+b(其中k為常數(shù),且k≠0),若平面直角坐標(biāo)系xOy中的點Pa,b),有點P的坐標(biāo)為(a*b,ab)與之相對應(yīng),則稱點P為點Pk衍生點.例如:P14)的“2衍生點P1+2×4,2×1+4),即P96).

1)點P(﹣1,6)的“2衍生點P的坐標(biāo)為   

2)若點P“5衍生點P的坐標(biāo)為(﹣3,9),求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課上老師呈現(xiàn)一個問題:

下面提供三種思路:

思路一:過點FMNCD(如圖甲);

思路二:過PPNEF,交AB于點N;

思路三:過OONFG,交CD于點N

解答下列問題:

1)根據(jù)思路一(圖甲),可求得∠EFG的度數(shù)為  ;

2)根據(jù)思路二、三分別在圖乙和圖丙中作出符合要求的輔助線;

3)請你從思路二、思路三中任選其中一種,寫出求∠EFG度數(shù)的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的平分線,的外角的平分線,如果,,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿上的處引拉線固定電線桿,拉線和地面所成的角,在離電線桿米的處安置高為米的測角儀,在處測得電線桿上處的仰角為,求拉線的長(結(jié)構(gòu)保留一位小數(shù),參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B⊙O的切線交直線AC于點D,點ECH的中點,連接AE并延長交BD于點F,直線CFAB的延長線于G.

(1)求證:AEFD=AFEC;

(2)求證:FC=FB;

(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

同步練習(xí)冊答案