【題目】已知△ABC中,AB=AC,BE平分∠ABC交邊AC于E.
(1)如圖(1),當∠BAC=108°時,證明:BC=AB+CE;
(2)如圖(2),當∠BAC=100°時,(1)中的結(jié)論還成立嗎?若不成立,是否有其他兩條線段之和等于BC,若有請寫出結(jié)論并完成證明.
【答案】(1)證明見解析;(2)BC=BE+AE,證明見解析.
【解析】
(1)如圖1中,在BC上截取BD=BA.只要證明△BEA≌△BED,CE=CD即可解決問題;
(2)結(jié)論:BC=BE+AE.如圖2中,在BA、BC上分別截取BF=BE,BH=BE.則△EBH≌△EBF,再證明EA=EH=EF=CF即可解決問題;
(1)如圖1中,在BC上截取BD=BA.
∵BA=BD,∠EBA=∠EBD,BE=BE,
∴△BEA≌△BED,
∴BA=BD,∠A=∠BDE=108°,
∵AB=AC,
∴∠C=∠ABC=36°,∠EDC=72°,
∴∠CED=72°,
∴CE=CD,
∴BC=BD+CD=AB+CE.
(2)結(jié)論:BC=BE+AE.
理由:如圖2中,在BA、BC上分別截取BF=BE,BH=BE.則△EBH≌△EBF,
∴EF=EH,
∵∠BAC=100°,AB=AC,
∴∠ABC=∠C=40°,
∴∠EBA=∠EBC=20°,
∴∠BFE=∠H=∠EAH=80°,
∴AE=EH,
∵∠BFE=∠C+∠FEC,
∴∠CEF=∠C=40°,
∴EF=CF,
∴BC=BF+CF=BE+AE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點.若∠AEF=90°,則一定有( )
A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點P從點A出發(fā)沿AB邊想向點B以2cm/s的速度移動,點Q從點B出發(fā)沿BC邊向點C以4cm/s的速度移動,如果P、Q同時出發(fā),經(jīng)過幾秒后△PBQ和△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AC=BC,點D為AB中點.∠GDH=90°,∠GDH繞點D旋轉(zhuǎn),DG,DH分別與邊AC,BC交于E,F兩點.下列結(jié)論:①AE+BF=AC,②AE2+BF2=EF2,③S四邊形CEDF=S△ABC,④△DEF始終為等腰直角三角形.其中正確的是( )
A. ①②③④ B. ①②③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB≠AC.D、E分別為邊AB、AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件: , 可以使得△FDB與△ADE相似.(只需寫出一個)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
①李明同學做了如圖乙的輔助線,將△BPC繞點B逆時針旋轉(zhuǎn)60°,如圖乙所示,連接PP′,從而問題得到解決.你能說明其中理由并完成問題解答嗎?
②如圖丙,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1;求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:O是坐標原點,P(m,n)(m>0)是函數(shù)y= (k>0)上的點,過點P作直線PA⊥OP于P,直線PA與x軸的正半軸交于點A(a,0)(a>m).設△OPA的面積為s,且s=1+ .
(1)當n=1時,求點A的坐標;
(2)若OP=AP,求k的值;
(3)設n是小于20的整數(shù),且k≠ ,求OP2的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC的頂點坐標為:A(1,2),B(2, 一1), C (4, 3).
(1)將△ABC向左平移2個單位長度,再向上平移1個單位長度,得△A'B'C'.畫出△A'B'C',并寫出△A'B'C'的頂點坐標;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com