精英家教網 > 初中數學 > 題目詳情
39、(1)如圖①所示,AB∥DE,∠BAC=130°,∠ACD=80°,試求∠CDE的度數.

(2)通過上題的解決,你能否用多種方法解決下面的問題,試試看.
如圖②所示,已知AB∥DE,試說明∠B+∠D=∠BCD.
分析:(1)此類題只需巧妙構造輔助線:作已知直線AB的平行線CF,然后運用平行線的性質即可證明;
(2)構造輔助線(如圖①②③所示),然后利用兩直線平行內錯角相等即可證明題目結論.
解答:解:(1)過C作CF∥AB.
∵AB∥DE,CF∥AB,
∴CF∥DE.
∵AB∥CF,
∴∠BAC+∠1=180°.
又∵∠BAC=130°,
∴∠1=50°.
又∵∠ACD=80°,
∴∠2=∠ACD-∠1=80°-50°=30°.
∵CF∥DE,
∴∠CDE=∠2=30°;

(2)方法提示:
方法1:過C作CF∥DE(如圖①所示),
∵AB∥DE,
∴AB∥DE∥CF,
∴∠B=∠BCF,∠D=∠DCF,
∴∠B+∠D=∠BCD.
方法2:延長BC交DE于點F,過F點作FG∥CD(如圖②).
方法3:過D點作DF∥BC交BA的反向延長線于F(如圖③).這兩種方法證明過程和方法1差不多.

點評:特別注意此類題中常見的輔助線:構造已知直線的平行線,然后熟練根據平行線的性質探討要求的角和已知角之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、(1)如圖,在圖1中,互不重疊的三角形共有3個,在圖2中,互不重疊的三角形共有5個,在圖3中,互不重疊的三角形共有7個,…,則在第n個圖形中,互不重疊的三角形共有
2n+1
個.(用含n的代數式表示)

(2)若在如圖4所示的n邊形中,P是A1An邊上的點,分別連接PA2、PA3、PA4…PAn-1,得到n-1個互不重疊的三角形.

你能否根據這樣的劃分方法寫出n邊形的內角和公式并說明你的理由;
(3)反之,若在四邊形內部有n個不同的點,按照(1)中的方法可得k個互不重疊的三角形,試探究n與k的關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、根據如圖2所示的(1),(2),(3)三個圖所表示的規(guī)律,依次下去第n個圖中平行四邊形的個數是
3n(n+1)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點.
(1)當∠DEF=45°時,求證:點G為線段EF的中點;
(2)設AE=x,FC=y,求y關于x的函數解析式,并寫出函數的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當EF=
5
6
時,討論△精英家教網AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結論,不要求寫出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°
(1)如圖2,若點C、A、D在同一條直線上,且點E在AB上,連接CE、BD,試判斷CE與BD有什么樣的關系,并說明理由.
(2)將△ADE繞點A旋轉到如圖3所示的位置,同樣連接CE、BD,(1)中的結論還成立嗎?并說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

小強和小勇利用課本上學過的知識來進行臺球比賽.
(1)小強把白球放在如圖1所示的位置,想通過擊打白球撞擊黑球,使黑球撞擊AC邊后反彈進F洞.想一想,小強這樣擊打,黑球能進F洞嗎?請用畫圖的方法驗證你的判斷,并說明理由.
(2)小勇想通過擊打白球撞擊黑球,使黑球至多撞擊臺球桌邊一次后進A洞,請你替小勇設計兩種方案,并分別在如圖2、圖3所示的臺球桌上畫出示意圖,解釋你的理由.

查看答案和解析>>

同步練習冊答案