在△ABC中,AC=BC,∠C=90°,將一塊三角板的直角頂點放在斜邊AB的中點P處,將三角板繞P點旋轉(zhuǎn),三角板的兩條直角邊分別交AC、CB于D、E兩點,如圖(1)、(2)所示.

(1)問PD與PE有何大小關(guān)系?并以圖(2)為例加以說明;

(2)在旋轉(zhuǎn)過程中,還會存在與圖(1)、(2)不同的情形嗎?若存在,請在圖(3)中畫出,并說明(1)中PD與PE的大小關(guān)系在圖(3)中是否還成立?

答案:
解析:

(1)PD=PE.理由:連接CP.易說明△PCD≌△PBE,∴PD=PE.(2)存在.如圖所示,PD與PE仍然相等.理由:連接PC.∵∠CPD=∠EPB,∠PCD=∠PBE=135°,PC=PB,∴△PCD≌△PBE,∴PD=PE.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=900,將一塊等腰三角形板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點。圖①,②,③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:

(1)       三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明。

(2)       三角板繞點P旋轉(zhuǎn),是否能居為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。

    (3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖④加以證明。

     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇興化市安豐中學(xué)八年級下學(xué)期第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:

(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省泰州市姜堰區(qū)四校八年級下學(xué)期第三次聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:

⑴三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明.
⑵三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由.
⑶若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(廣西河池卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,在△ABC中, AC=6,BC=5,sinA=,則tanB=    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇興化市八年級下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

研究:

(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;

(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由;

(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.

 

查看答案和解析>>

同步練習(xí)冊答案