【題目】計(jì)算與解不等式
(1)計(jì)算:(3﹣π)0+2tan60°+(﹣1)2015
(2)解不等式組: ,并把它的解在數(shù)軸上表示出來.

【答案】
(1)解:計(jì)算:(3﹣π)0+2tan60°+(﹣1)2015

=1+2 ﹣1﹣2

=0


(2)解: ,

由①得:x>﹣2,

由②得:x≤1,

∴原不等式的解集為:﹣2<x≤1.

在數(shù)軸上表示為:


【解析】(1)根據(jù)零指數(shù)冪、特殊角的三角函數(shù)值以及二次根式的化簡(jiǎn)的知識(shí)求解即可求得答案;(2)首先分別求得各不等式的解集,繼而求得不等式組的解集.
【考點(diǎn)精析】利用零指數(shù)冪法則和不等式的解集在數(shù)軸上的表示對(duì)題目進(jìn)行判斷即可得到答案,需要熟知零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)三角形能被一條線段分割成兩個(gè)等腰三角形,那么稱這條線段為這個(gè)三角形的特異線,稱這個(gè)三角形為特異三角形.

(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E.
求證:AE是△ABC的一條特異線.
(2)如圖2,已知BD是△ABC的一條特異線,其中∠A= ,∠ABC為鈍角,求出所有可能的∠ABC的度數(shù).
(3)如圖3,△ABC是一個(gè)腰長(zhǎng)為2的等腰銳角三角形,且它是特異三角形,若它的頂角
度數(shù)為整數(shù),請(qǐng)求出其特異線的長(zhǎng)度;若它的頂角度數(shù)不是整數(shù),請(qǐng)直接寫出頂角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形 ABCD ,ADBC,AB=BC=CD=AD=4,A=C=60°,連接 BD,將BCD 繞點(diǎn) B 旋轉(zhuǎn),當(dāng) BD( BD′) AD 交于一點(diǎn) E,BC(即 BC′)同時(shí)與 CD 交于一點(diǎn) F 時(shí),下列結(jié)論正確的是(

①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周長(zhǎng)的最小值是4+2

A. ①② B. ②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長(zhǎng)為_____,面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠計(jì)劃若干天完成一批夾克衫的訂貨任務(wù).如果每天生產(chǎn)服裝 20 件,那么就比訂貨任務(wù)少生產(chǎn) 100 件;如果每天生產(chǎn) 23 件,那么就可超過訂貨任務(wù) 20 件.

(1)若設(shè)原計(jì)劃 x 天完成,則這批夾克衫的訂貨任務(wù)用 x 的代數(shù)式可表示 為 .根據(jù)題意列出方程,并求出原計(jì)劃多少天完成?這批夾克衫的訂貨任務(wù)是多少?

(2)若設(shè)這批夾克衫的訂貨任務(wù)為 y 件,試根據(jù)題意列出方程.(直接列出方程,不必求解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB的解析式為y=x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),作PEy軸于點(diǎn)E,PFx軸于點(diǎn)F,連接EF,則線段EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式2(x+1)-1≥3x+2,并把它的解集在數(shù)軸上表示出來;

(2)解不等式-1≥,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)去年計(jì)劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實(shí)際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場(chǎng)去年實(shí)際生產(chǎn)玉米、小麥各多少噸?

查看答案和解析>>

同步練習(xí)冊(cè)答案