【題目】有一塊邊長(zhǎng)為4的正方形ABCD,將一塊足夠大的直角三角板如圖放置, CB延長(zhǎng)線與直角邊交于點(diǎn)E.則四邊形AECF的面積是

【答案】16.
【解析】∵四邊形ABCD為正方形,
D=ABC=90,AD=AB,
ABE=D=90,
EAF=90
DAF+BAF=90,BAE+BAF=90,
DAF=BAE,
AEB和AFD中,
,
AEBAFD(ASA),
∴SAEB=SAFD,
它們都加上四邊形ABCF的面積=正方形的面積=16.
所以答案是:16.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,﹣3)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時(shí)出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1 , y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.

(1)填空:A,B兩地相距千米;
(2)求兩小時(shí)后,貨車離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)當(dāng)客車行駛多長(zhǎng)時(shí)間,客、貨兩車相距150千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的直徑CD垂直于弦AB,垂足為點(diǎn)E,∠ACD=22.5°,若CD=6cm,則AB的長(zhǎng)為( 。

A. 4cm B. 3cm C. 2cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點(diǎn)C,過(guò)點(diǎn)B作BD⊥CP于D.

(1)求證:CB2=ABDB;

(2)若⊙O的半徑為2,∠BCP=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:
(1)AD=FC;
(2)AB=BC+AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過(guò)A、B兩個(gè)景點(diǎn),景區(qū)管委會(huì)又開(kāi)發(fā)了風(fēng)景優(yōu)美的景點(diǎn)C,經(jīng)測(cè)量景點(diǎn)C位于景點(diǎn)A的北偏東30°方向8km處,位于景點(diǎn)B的正北方向,已知AB=5km.

(1)求景點(diǎn)B與景點(diǎn)為C的距離;(結(jié)果保留根號(hào))

(2)為方便游客到景點(diǎn)游玩,景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)C向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長(zhǎng).(結(jié)果精確到0.1km.參考數(shù)據(jù): =1.73, =2.24)

查看答案和解析>>

同步練習(xí)冊(cè)答案