【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(12,0),B(0,16),點(diǎn)C從B點(diǎn)出發(fā)向y軸負(fù)方向以每秒2個(gè)單位的速度運(yùn)動(dòng),過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上動(dòng)點(diǎn),連結(jié)CD,DE,以CD,DE為邊作CDEF.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)C運(yùn)動(dòng)了多少秒時(shí),點(diǎn)E恰好是AB的中點(diǎn)?
(2)當(dāng)t=4時(shí),若CDEF的頂點(diǎn)F恰好落在y軸上,請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo);
(3)點(diǎn)C在運(yùn)動(dòng)過(guò)程中,若在x軸上存在兩個(gè)不同的點(diǎn)D使CDEF成為矩形,求出滿足條件的t的取值范圍.
【答案】(1)點(diǎn)C運(yùn)動(dòng)了6.25秒時(shí),點(diǎn)E恰好是AB的中點(diǎn);(2)D(,0);(3)
【解析】
(1)在Rt△AOC中,利用勾股定理構(gòu)建方程即可解決問(wèn)題;
(2求出直線CE解析式,利用方程組確定點(diǎn)E坐標(biāo)即可解決問(wèn)題;
(3)求出兩個(gè)特殊位置的時(shí)間t即可解決問(wèn)題.①當(dāng)點(diǎn)C在y軸的正半軸上時(shí),設(shè)以EC為直徑的⊙P與x軸相切于點(diǎn)D,作ER⊥OA于R.求出此時(shí)的時(shí)間t;
②當(dāng)點(diǎn)C′在y軸的負(fù)半軸上時(shí),設(shè)以E′C′為直徑的⊙P′與x軸相切于點(diǎn)D′,作E′K⊥OA于K.求出此時(shí)的時(shí)間t;
(1)根據(jù)題意知BC=2t、BO=16、OA=12,則OC=16﹣2t,
∵CE⊥AB且E為AB中點(diǎn),∴CB=CA=2t,
在Rt△AOC中,由OC2+OA2=AC2可得(16﹣2t)2+122=(2t)2,解得:t=6.25,
即點(diǎn)C運(yùn)動(dòng)了6.25秒時(shí),點(diǎn)E恰好是AB的中點(diǎn);
(2)如圖1中, 當(dāng)t=4時(shí),BC=OC=8,∵A(12,0),B(0,16),
∴直線AB的解析式為y=﹣x+16,∵CE⊥AB,C(0,8),∴直線CE的解析式為y=x+8,,解得,∴E( ,),∵點(diǎn)F在y軸上,∴DE∥y軸,∴D(,0).
(3)如圖2中,
①當(dāng)點(diǎn)C在y軸的正半軸上時(shí),設(shè)以EC為直徑的⊙P與x軸相切于點(diǎn)D,作ER⊥OA于R.
根據(jù)PD=(OC+ER),可得: t= [16﹣2t+(20﹣t)×],解得t=.
②當(dāng)點(diǎn)C′在y軸的負(fù)半軸上時(shí),設(shè)以E′C′為直徑的⊙P′與x軸相切于點(diǎn)D′,作E′K⊥OA于K.
根據(jù)P′D′=(OC′+E′K),可得: t= [2t﹣16+(t﹣20)×],解得t=,
綜上所述,點(diǎn)C在運(yùn)動(dòng)過(guò)程中,若在x軸上存在兩個(gè)不同的點(diǎn)D使CDEF成為矩形,滿足條件的t的取值范圍為<t<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問(wèn)題:
(1)本次抽測(cè)的男生有________人,抽測(cè)成績(jī)的眾數(shù)是_________;
(2)請(qǐng)將條形圖補(bǔ)充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊為5;②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;③三角形的三邊分別為a,b,c若a2+c2=b2,則∠B=90°④在△ABC中,∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;其中正確命題的個(gè)數(shù)為( )個(gè)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A城有肥料200噸,B城有肥料300噸.現(xiàn)要把這些肥料全部運(yùn)往C,D兩鄉(xiāng),從A城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.設(shè)從A城調(diào)往C鄉(xiāng)肥料x噸.
(1)根據(jù)題意,填寫下表:
調(diào)入地 數(shù)量/噸 調(diào)出地 | C | D |
A | x | ______ |
B | _____ | ______ |
總計(jì) | 240 | 260 |
(2)給出完成此項(xiàng)調(diào)運(yùn)任務(wù)最節(jié)省費(fèi)用的調(diào)運(yùn)方案及所需費(fèi)用,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=120°,點(diǎn)A,B分別在OM,ON上,且OA=OB=a,將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(0°<α<120°且α≠60°),作點(diǎn)A關(guān)于直線OM′的對(duì)稱點(diǎn)C,畫直線BC交OM′于點(diǎn)D,連接AC,AD,則有:(1)AD=__ CD(填數(shù)量關(guān)系);(2)△ACD面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,經(jīng)過(guò)B(2,0)、C(6,0)兩點(diǎn)的⊙H與y軸的負(fù)半軸相切于點(diǎn)A,雙曲線y= 經(jīng)過(guò)圓心H,則反比例函數(shù)的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,我國(guó)海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動(dòng),堅(jiān)決把“洋垃圾”拒于國(guó)門之外.如圖,某天我國(guó)一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.
(1)求B點(diǎn)到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(感知)如圖①,點(diǎn)C是AB中點(diǎn),CD⊥AB,P是CD上任意一點(diǎn),由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點(diǎn)到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于點(diǎn)A和點(diǎn)B,點(diǎn)C是AB中點(diǎn),CD⊥AB交OA于點(diǎn)D,連結(jié)BD,求BD的長(zhǎng)
(應(yīng)用)如圖③
(1)將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AB′,請(qǐng)?jiān)趫D③網(wǎng)格中畫出線段AB;
(2)若存在一點(diǎn)P,使得PA=PB′,且∠APB′≠90°,當(dāng)點(diǎn)P的橫、縱坐標(biāo)均為整數(shù)時(shí),則AP長(zhǎng)度的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測(cè)得塑像底部B處的俯角為18°48′,測(cè)得塑像頂部A處的仰角為45°,點(diǎn)D在觀測(cè)點(diǎn)C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 米(參考數(shù)據(jù):tan78°12′≈4.8).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com