【題目】某校為了了解學(xué)生的每周課外閱讀時間(表示,單位:小時),采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果按,,分為四個等級,并依次用、、表示,根據(jù)調(diào)查結(jié)果,繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.

(1)等級的學(xué)生占調(diào)查學(xué)生的百分比是多少?

(2)等級為的學(xué)生分別有多少人?并把條形統(tǒng)計圖補充完整;

(3)若該校學(xué)生共有人,估計每周課外閱讀時間為的人數(shù).

【答案】(1)30%;(2)等級為學(xué)生有人,等級為的學(xué)生有人;補圖見解析;(3)180.

【解析】

由條形圖、扇形圖中給出的級別A的數(shù)字,可計算出調(diào)查學(xué)生人數(shù),用C等級人數(shù)除以總?cè)藬?shù)可得C的百分比;
在扇形圖中的百分比可計算出B在扇形圖中的百分比,乘以總?cè)藬?shù)可得B的人數(shù),再依據(jù)各等級人數(shù)之和等于總?cè)藬?shù)可得C的人數(shù);
總?cè)藬?shù)課外閱讀時間滿足的百分比即得所求.

解:本次調(diào)查的學(xué)生人數(shù)為
所以C級所占的百分比為;

級所占的百分比為:
B級的人數(shù)為
D級的人數(shù)為:,
補全圖形如下:


估計每周課外閱讀時間為的人數(shù)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對籃球、羽毛球、乒乓球、踢毽子、跳繩等5項體育活動的喜歡程度,某校隨機抽查部分學(xué)生,對他們最喜歡的體育項目(每人只選一項)進行了問卷調(diào)查,并將統(tǒng)計數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖:

請解答下列問題:

1m=  %,這次共抽取了  名學(xué)生進行調(diào)查;請補全條形統(tǒng)計圖;

2)若全校有800名學(xué)生,則該校約有多少名學(xué)生喜愛打籃球?

3)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(二男二女)中隨機選取2人進行體能測試,求抽到一男一女學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1ax+ba,b為常數(shù),且a0)與反比例函數(shù)y2m為常數(shù),且m0)的圖象交于點A(﹣4,2),B2,n).

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)連接OA,OB,求△AOB的面積.

3)直接寫出當(dāng)0y1y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y(k0)的圖象與一次函數(shù)yx的圖象交于A、B兩點(A在第一象限).若點A的橫坐標(biāo)為4

(1)k的值.

(2)根據(jù)圖象,直接寫出當(dāng)x時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC60°,∠C45°,點D,E分別為邊ABAC上的點,且DEBC,BDDE2,CEBC.動點P從點B出發(fā),以每秒1個單位長度的速度沿BDEC勻速運動,運動到點C時停止.過點PPQBC于點Q,設(shè)△BPQ的面積為S,點P的運動時間為t,則S關(guān)于t的函數(shù)圖象大致為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).

(1)求該拋物線所對應(yīng)的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于BC兩點,且D、E分別為頂點.則下列結(jié)論:①a=;AC=AE;③△ABD是等腰直角三角形;④當(dāng)x1時,y1y2  其中正確結(jié)論的個數(shù)是( )

A. 1B2C3D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).

(1)求該拋物線的解析式;

(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);

(3)若點Qx軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案