【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).
【答案】見解析
【解析】試題分析:從題中可知:(1)△ABC和△EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE即可證明.
(2)根據(jù)全等三角形的性質(zhì),利用平行四邊形的性質(zhì)求解即可.
(1)證明:∵四邊形ABCD為平行四邊形,
∴AD∥BC,AD=BC.
∴∠DAE=∠AEB.
∵AB=AE,
∴∠AEB=∠B.
∴∠B=∠DAE.
∵在△ABC和△AED中,
,
∴△ABC≌△EAD.
(2)解:∵AE平分∠DAB(已知),
∴∠DAE=∠BAE;
又∵∠DAE=∠AEB,
∴∠BAE=∠AEB=∠B.
∴△ABE為等邊三角形.
∴∠BAE=60°.
∵∠EAC=25°,
∴∠BAC=85°.
∵△ABC≌△EAD,
∴∠AED=∠BAC=85°.
科目:初中數(shù)學 來源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.
(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等組 的關(guān)聯(lián)方程是________
(2)若不等式組 的一個關(guān)聯(lián)方程的根是整數(shù), 則這個關(guān)聯(lián)方程可以是________(寫出一個即可)
(3)若方程 3-x=2x,3+x= 都是關(guān)于 x 的不等式組 的關(guān)聯(lián)方程,直接寫出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課題組為了解全市八年級學生對數(shù)學知識的掌握情況,在一次數(shù)學檢測中,從全市24000名八年級考生中隨機抽取部分學生的數(shù)學成績進行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:
分數(shù)段 | 頻數(shù) | 頻率 |
<60 | 20 | 0.10 |
60≤<70 | 28 | 0.14 |
70≤<80 | 54 | 0.27 |
80≤<90 | 0.20 | |
90≤<100 | 24 | 0.12 |
100≤<110 | 18 | |
110≤≤120 | 16 | 0.08 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中和所表示的數(shù)分別為:= ,= ;
(2)請在圖中,補全頻數(shù)分布直方圖;
(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市24000名八年級考生數(shù)學成績?yōu)閮?yōu)秀的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知鈍角三角形ABC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)110°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為( )
A.55°
B.65°
C.75°
D.85°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)9+(﹣7)+10+(﹣3)+(﹣9)
(2)12+(﹣14)+6+(﹣7)
(3)﹣
(4)﹣4.2+5.7+(﹣8.7)+4.2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT=( )
A.
B.2
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com