【題目】為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬元,一套B型“廉租房”的造價(jià)為4.8萬元.
(1)請問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?
【答案】(1)共有6種方案;(2)當(dāng)建設(shè)A型15套時(shí),投入資金最少,最少資金是198萬元.
【解析】(1)設(shè)建設(shè)A型x套,B型(40﹣x)套,然后根據(jù)投入資金不超過200萬元,又不低于198萬元列出不等式組,求出不等式組的解集,再根據(jù)x是正整數(shù)解答;
(2)設(shè)總投資W元,建設(shè)A型x套,B型(40﹣x)套,然后根據(jù)總投資等于A、B兩個(gè)型號的投資之和列式函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的增減性解答.
(1)設(shè)建設(shè)A型x套,則B型(40﹣x)套,根據(jù)題意得
,
解不等式①得:x≥15,
解不等式②得:x≤20,
所以不等式組的解集是15≤x≤20.
∵x為正整數(shù),∴x=15、16、17、18、19、20.
答:共有6種方案.
(2)設(shè)總投資W萬元,建設(shè)A型x套,則B型(40﹣x)套,則
W=5.2x+4.8×(40﹣x)=0.4x+192.
∵0.4>0,∴W隨x的增大而增大,
∴當(dāng)x=15時(shí),W最小,此時(shí)W最小=0.4×15+192=198萬元.
答:當(dāng)建設(shè)A型15套時(shí),投入資金最少,最少資金是198萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,D是斜邊AB上任一點(diǎn),于E, 交CD的延長線于點(diǎn)F.于點(diǎn)H,交AE于點(diǎn)G.
(1)直接寫出EF、AE和BF之間的關(guān)系;
(2)探究BD與CG之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文美書店決定用不多于20000元購進(jìn)甲乙兩種圖書共1200本進(jìn)行銷售.甲、乙兩種圖書的進(jìn)價(jià)分別為每本20元、14元,甲種圖書每本的售價(jià)是乙種圖書每本售價(jià)的1.4倍,若用1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10本.
(1)甲乙兩種圖書的售價(jià)分別為每本多少元?
(2)書店為了讓利讀者,決定甲種圖書售價(jià)每本降低3元,乙種圖書售價(jià)每本降低2元,問書店應(yīng)如何進(jìn)貨才能獲得最大利潤?(購進(jìn)的兩種圖書全部銷售完.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請?jiān)谙旅胬ㄌ柪镅a(bǔ)充完整證明過程:
已知:如圖,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,且∠CEF=∠CFE.求證:CD⊥AB.
證明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (對頂角相等)
∴∠CFE=∠3(等量代換)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已證) ∴( )+( )=90°(等量代換)
在△AED中, ∠ADE=90°( 三角形內(nèi)角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,按要求完成下列各小題.
(1)若A+B的結(jié)果中不存在含x的一次項(xiàng),求a的值;
(2)當(dāng)a=﹣2時(shí),求A﹣3B的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:數(shù)軸上任意兩點(diǎn)之間的距離與這兩點(diǎn)對應(yīng)的數(shù)的關(guān)系.
(1)如果點(diǎn)A表示數(shù)5,將點(diǎn)A先向左移動4個(gè)單位長度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
如果點(diǎn)A表示數(shù)﹣2,將點(diǎn)A向右移動5個(gè)單位長度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M對應(yīng)的數(shù)是m,點(diǎn)N對應(yīng)的數(shù)是n,那么點(diǎn)M與點(diǎn)N之間的距離可表示為 (用m、n表示,且m≥n).
(3)應(yīng)用:利用你發(fā)現(xiàn)的結(jié)論解決下列問題:數(shù)軸上表示x和﹣2的兩點(diǎn)P與Q之間的距離是3,則x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場今年月的商品銷售總額一共是萬元,如圖(1)表示的是其中每個(gè)月銷售總額的情況,圖(2)表示的是商場服裝部各月銷售額占商場當(dāng)月銷售總額的百分比情況,觀察圖(1)、圖(2),下列說法不正確的是( )
A. 4月份商場的商品銷售總額是75萬元 B. 1月份商場服裝部的銷售額是22萬元
C. 5月份商場服裝部的銷售額比4月份減少了 D. 3月份商場服裝部的銷售額比2月份減少了
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠BCD=90°,BC=CD=2AD,E為∠BCD平分線上的點(diǎn),連接BE、DE, 延長BE交CD于點(diǎn)F.
⑴ 求證:△BCE≌△DCE;
⑵ 若DE∥AB,求證:FD=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)C是線段AB的中點(diǎn)
(1)如圖,若點(diǎn)D在線段CB上,且BD=1.5厘米,AD=6.5厘米,求線段CD的長度;
(2)若將(1)中的“點(diǎn)D在線段CB上”改為“點(diǎn)D在線段CB的延長線上”,其他條件不變,請畫出相應(yīng)的示意圖,并求出此時(shí)線段CD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com