(2005•四川)已知關(guān)于x的方程x2-(2k-1)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的最大整數(shù)值是( )
A.-2
B.-1
C.0
D.1
【答案】分析:根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍.
解答:解:∵a=1,b=-(2k-1),c=k2,方程有兩個(gè)不相等的實(shí)數(shù)根
∴△=b2-4ac=(2k-1)2-4k2=1-4k>0
∴k<
∴k的最大整數(shù)為0.
故選C.
點(diǎn)評(píng):總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒(méi)有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2005•四川)已知反比例函數(shù)y=經(jīng)過(guò)點(diǎn)(-1,2),那么一次函數(shù)y=-kx+2的圖象一定不經(jīng)過(guò)( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2005•四川)已知反比例函數(shù)y=經(jīng)過(guò)點(diǎn)(-1,2),那么一次函數(shù)y=-kx+2的圖象一定不經(jīng)過(guò)( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年四川省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年四川省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•四川)已知反比例函數(shù)y=經(jīng)過(guò)點(diǎn)(-1,2),那么一次函數(shù)y=-kx+2的圖象一定不經(jīng)過(guò)( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案