【題目】如圖,邊長(zhǎng)為4的大正方形ABCD內(nèi)有一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B停止(不含點(diǎn)A和點(diǎn)B).設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.
(1)小穎通過(guò)認(rèn)真的觀察分析,得出了一個(gè)正確的結(jié)論:當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,因此當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí)△ABP的面積S始終不發(fā)生變化.
問(wèn):在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,還存在類似的現(xiàn)象嗎?若存在,請(qǐng)說(shuō)出P的位置;若不存在,請(qǐng)說(shuō)明理由.
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中△ABP的面積S是否存在最大值?若存在,請(qǐng)求出最大面積;若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)寫出S與t之間的關(guān)系式.
【答案】(1)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,還存在類似的現(xiàn)象,當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),△ABP的面積S始終不發(fā)生變化.(2)8;(3)①當(dāng)點(diǎn)P在AD上時(shí),S =2t(0<t≤4),
②當(dāng)點(diǎn)P在DE上時(shí),S=8(4<t≤7),
③當(dāng)點(diǎn)P在EF上時(shí),S=22-2t(7<t≤8),
④當(dāng)點(diǎn)P在GF上時(shí),S=6(8<t≤9),
⑤當(dāng)點(diǎn)P在GB上時(shí),S=24-2t(9<t<12).
【解析】
(1)根據(jù)GF∥AB,可得當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,即當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),△ABP的面積S始終不發(fā)生變化.
(2)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),AB邊上的高為4,據(jù)此可得△ABP的面積S最大值為:AB×AD=×4×4=8;
(3)分5種情況進(jìn)行討論:①當(dāng)點(diǎn)P在AD上時(shí),②當(dāng)點(diǎn)P在DE上時(shí),③當(dāng)點(diǎn)P在EF上時(shí),④當(dāng)點(diǎn)P在GF上時(shí),⑤當(dāng)點(diǎn)P在GB上時(shí),分別根據(jù)△ABP的面積計(jì)算方法,得出S與t之間的關(guān)系式.
(1)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,還存在類似的現(xiàn)象.
∵∠ABG+∠BGF=180°,
∴GF∥AB,
∴當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,
∴當(dāng)點(diǎn)P在線段GF上運(yùn)動(dòng)時(shí),△ABP的面積S始終不發(fā)生變化;
(2)∵△ABP中,AB的長(zhǎng)不變,
∴當(dāng)AB邊上的高最大時(shí),△ABP的面積S存在最大值,
故當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),AB邊上的高為4,
∴△ABP的面積S最大值為:AB×AD=×4×4=8;
(3)分5種情況:
①當(dāng)點(diǎn)P在AD上時(shí),S=×4×t=2t(0<t≤4),
②當(dāng)點(diǎn)P在DE上時(shí),S=×4×4=8(4<t≤7),
③當(dāng)點(diǎn)P在EF上時(shí),S=×4×[4-(t-7)]=2(11-t)=22-2t(7<t≤8),
④當(dāng)點(diǎn)P在GF上時(shí),S=×4×3=6(8<t≤9),
⑤當(dāng)點(diǎn)P在GB上時(shí),S=×4×[4-(t-8)]=2(12-t)=24-2t(9<t<12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線AB與CD之間,請(qǐng)說(shuō)明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)E在AB與CD的上方,①請(qǐng)嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED= °
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1,l2交于分別交于點(diǎn)E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分解因式x2-4y2-2x+4y,細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前兩項(xiàng)符合平方差公式,后兩項(xiàng)可提取公因式,前后兩部分分別分解因式后會(huì)產(chǎn)生公因式,然后提取公因式就可以完成整個(gè)式子的分解因式,過(guò)程為:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).這種分解因式的方法叫分組分解法,利用這種方法解決下列問(wèn)題:
(1)分解因式:a2-4a-b2+4;
(2)若△ABC三邊a、b、c滿足a2-ab-ac+bc=0,試判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi),為更好地決策,自來(lái)水公司的隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖,(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)此次抽樣調(diào)查的樣本容量是 .
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來(lái)水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬(wàn)用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,現(xiàn)有一個(gè)長(zhǎng)方體水槽放在桌面上,從水槽內(nèi)量得它的側(cè)面高20cm,底面的長(zhǎng)25cm,寬20cm,水槽內(nèi)水的高度為acm,往水槽里放入棱長(zhǎng)為10cm的立方體鐵塊.
(1)求下列兩種情況下a的值.
①若放入鐵塊后水面恰好在鐵塊的上表面;
②若放入鐵塊后水槽恰好盛滿(無(wú)溢出).
(2)若0<a≤18,求放入鐵塊后水槽內(nèi)水面的高度(用含a的代數(shù)式表示).
(3)如圖2,在水槽旁用管子連通一個(gè)底面在桌面上的圓柱形容器,內(nèi)部底面積為50cm2,管口底部A離水槽內(nèi)底面的高度為hcm(h>a),水槽內(nèi)放入鐵塊,水溢入圓柱形容器后,容器內(nèi)水面與水槽內(nèi)水面的高度差為8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,研究用正多邊形鑲嵌平面.請(qǐng)解決以下問(wèn)題:
(1)用一種正多邊形鑲嵌平面
例如,用 6 個(gè)全等的正三角形鑲嵌平面,擺放方案如圖所示:
若用 m 個(gè)全等的正 n 邊形鑲嵌平面,求出 m,n 應(yīng)滿足的關(guān)系式;
(2)用兩種正多邊形鑲嵌平面
若這兩種正多邊形分別是邊長(zhǎng)相等的正三角形和正方形,請(qǐng)畫出兩種不同的擺放方案;
(3)用多種正多邊形鑲嵌平面
若鑲嵌時(shí)每個(gè)頂點(diǎn)處的正多邊形有 n 個(gè),設(shè)這 n 個(gè)正多邊形的邊數(shù)分別為 x1,x2,…,xn,求出 x1,x2,…,xn 應(yīng)滿足的關(guān)系式.(用含 n 的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游泳館普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元/張,每次憑卡不再收費(fèi).
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y元.
(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com