(2011•盤錦)如圖,矩形紙片ABCD,AD=2AB=4,將紙片折疊,使點(diǎn)C落在AD上的點(diǎn)E處,折痕為BF,則DE=
4-2
3
4-2
3
分析:根據(jù)折疊前后,對應(yīng)線段線段,矩形對邊相等,把線段AD,AB轉(zhuǎn)化到Rt△ABE中,由已知AD=2AB,得BE=2AB=4;然后根據(jù)在Rt△ABE中利用勾股定理求得AE的長度,從而求得DE=AD-AE.
解答:解:∵四邊形ABCD是矩形,AD=2AB=4,
∴AD=BC=4;
∵將紙片折疊,使點(diǎn)C落在AD上的點(diǎn)E處,折痕為BF,
∴BE=BC=4;
在Rt△ABE中,BE=2AB=4,AB=2,
AE=2
3
(勾股定理),
∴DE=AD-AE=4-2
3

故答案是:4-2
3
點(diǎn)評(píng):本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后對應(yīng)線段、角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)如圖,在一個(gè)矩形空地ABCD上修建一個(gè)矩形花壇AMPQ,要求點(diǎn)M在AB上,點(diǎn)Q在AD上,點(diǎn)P在對角線BD上.若AB=6m,AD=4m,設(shè)AM的長為xm,矩形AMPQ的面積為S平方米.
(1)求S與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),S有最大值?請求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)如圖,已知⊙O的半徑為4,點(diǎn)D是直徑AB延長線上一點(diǎn),DC切⊙O于點(diǎn)C,連接AC,若∠CAB=30°,則BD的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)如圖,在正方形ABCD中,點(diǎn)E、F分別為AD、AB的中點(diǎn),連接DF、CE,DF與CE交于點(diǎn)H,則下列結(jié)論:①DF⊥CE;②DF=CE;③
DE
CE
=
HD
CD
;④
DE
DC
=
HD
HE
.其中正確結(jié)論的序號(hào)有
①②③
①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)如圖,直線y=
m3
x+m(m≠0)交x軸負(fù)半軸于點(diǎn)A、交y軸正半軸于點(diǎn)B且AB=5,過點(diǎn)A作直線AC⊥AB交y軸于點(diǎn)C.點(diǎn)E從坐標(biāo)原點(diǎn)O出發(fā),以0.8個(gè)單位/秒的速度沿y軸向上運(yùn)動(dòng);與此同時(shí)直線l從與直線AC重合的位置出發(fā),以1個(gè)單位/秒的速度沿射線AB方向平行移動(dòng).直線l在平移過程中交射線AB于點(diǎn)F、交y軸于點(diǎn)G.設(shè)點(diǎn)E離開坐標(biāo)原點(diǎn)O的時(shí)間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時(shí)點(diǎn)F的坐標(biāo);
(3)直線l在平移過程中,設(shè)點(diǎn)E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案