已知Rt△ABC中,∠ACB=90°,CA=CB,有一個(gè)圓心角為45°,半徑的長(zhǎng)等于CA的扇形CEF繞點(diǎn)C旋轉(zhuǎn),且直線CE,CF分別與直線AB交于點(diǎn)M,N.
(1)當(dāng)扇形CEF繞點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn)時(shí),如圖①,求證:MN2=AM2+BN2;
思路點(diǎn)撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉(zhuǎn)化為在直角三角形中解決.可將△ACM沿直線CE對(duì)折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.
請(qǐng)你完成證明過程:
(2)當(dāng)扇形CEF繞點(diǎn)C旋轉(zhuǎn)至圖②的位置時(shí),關(guān)系式MN2=AM2+BN2是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

【答案】分析:(1)將△ACM沿直線CE對(duì)折,得△DCM,連DN,證明△CDN≌△CBN,再利用勾股定理求出即可;
(2)將△ACM沿直線CE對(duì)折,得△GCM,連GN,證明△CGN≌△CBN,進(jìn)而利用勾股定理求出即可.
解答:(1)證明:
將△ACM沿直線CE對(duì)折,得△DCM,連DN,
則△DCM≌△ACM.
有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.
又由CA=CB,得 CD=CB.  
由∠DCN=∠ECF-∠DCM=45°-∠DCM,
∠BCN=∠ACB-∠ECF-∠ACM=90°-45°-∠ACM,
得∠DCN=∠BCN. 
又CN=CN,
∴△CDN≌△CBN.    
∴DN=BN,∠CDN=∠B.
∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.
∴在Rt△MDN中,由勾股定理,
得MN2=DM2+DN2.即MN2=AM2+BN2. 

(2)關(guān)系式MN2=AM2+BN2仍然成立.  
證明:
將△ACM沿直線CE對(duì)折,得△GCM,連GN,
則△GCM≌△ACM. 
有CG=CA,GM=AM,
∠GCM=∠ACM,∠CGM=∠CAM.
又由CA=CB,得 CG=CB.
由∠GCN=∠GCM+∠ECF=∠GCM+45°,
∠BCN=∠ACB-∠ACN=90°-(∠ECF-∠ACM)=45°+∠ACM.
得∠GCN=∠BCN.   
又CN=CN,
∴△CGN≌△CBN.
有GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°-∠CAB=135°,
∴∠MGN=∠CGM-∠CGN=135°-45°=90°.
∴在Rt△MGN中,由勾股定理,
得MN2=GM2+GN2.即MN2=AM2+BN2
點(diǎn)評(píng):此題主要考查了勾股定理以及全等三角形的證明,根據(jù)已知作出正確的輔助線是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是( 。
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長(zhǎng)線于E,BA、CE延長(zhǎng)線相交于F點(diǎn).
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長(zhǎng)是關(guān)于x的方程x2-(m+5)x+6m=0的兩個(gè)實(shí)數(shù)根.求m的值及AC、BC的長(zhǎng)(BC>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)D在BC的延長(zhǎng)線上,點(diǎn)E在AC上,且CD=CE,延長(zhǎng)BE交AD于點(diǎn)F,求證:BF⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案