(2012•婁底)如圖,F(xiàn)E∥ON,OE平分∠MON,∠FEO=28°,則∠MFE=
56
56
度.
分析:先根據(jù)平行線的性質(zhì)得出∠NOE=∠FEO,再根據(jù)角平分線的性質(zhì)得出∠NOE=∠EOF,由三角形外角的性質(zhì)即可得出結(jié)論.
解答:解:∵FE∥ON,∠FEO=28°,
∴∠NOE=∠FEO=28°,
∵OE平分∠MON,
∴∠NOE=∠EOF=28°,
∵∠MFE是△EOF的外角,
∴∠MFE=∠NOE+∠EOF=28°+28°=56°.
故答案為:56.
點(diǎn)評:本題考查的是三角形外角的性質(zhì),即三角形的外角等于與之不相鄰的兩個(gè)內(nèi)角的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•婁底)如圖,在一場羽毛球比賽中,站在場內(nèi)M處的運(yùn)動員林丹把球從N點(diǎn)擊到了對方內(nèi)的B點(diǎn),已知網(wǎng)高OA=1.52米,OB=4米,OM=5米,則林丹起跳后擊球點(diǎn)N離地面的距離NM=
3.42
3.42
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•婁底)如圖,小紅同學(xué)用儀器測量一棵大樹AB的高度,在C處測得∠ADG=30°,在E處測得∠AFG=60°,CE=8米,儀器高度CD=1.5米,求這棵樹AB的高度(結(jié)果保留兩位有效數(shù)字,
3
≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•婁底)如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).
(1)求證:△MBA≌△NDC;
(2)四邊形MPNQ是什么樣的特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•婁底)如圖,A、B的坐標(biāo)分別為(1,0)、(0,2),若將線段AB平移到至A1B1,A1、B1的坐標(biāo)分別為(2,a)、(b,3),則a+b=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•婁底)如圖,在△ABC中,AB=AC,∠B=30°,BC=8,D在邊BC上,E在線段DC上,DE=4,△DEF是等邊三角形,邊DF交邊AB于點(diǎn)M,邊EF交邊AC于點(diǎn)N.
(1)求證:△BMD∽△CNE;
(2)當(dāng)BD為何值時(shí),以M為圓心,以MF為半徑的圓與BC相切?
(3)設(shè)BD=x,五邊形ANEDM的面積為y,求y與x之間的函數(shù)解析式(要求寫出自變量x的取值范圍);當(dāng)x為何值時(shí),y有最大值?并求y的最大值.

查看答案和解析>>

同步練習(xí)冊答案