【題目】如圖,正方形的邊長為4,點是對角線的中點,點分別在、邊上運動,且保持,連接,.在此運動過程中,下列結(jié)論:①;②;③四邊形的面積保持不變;④當時,,其中正確的結(jié)論是(

A.①②B.②③C.①②④D.①②③④

【答案】D

【解析】

OG,,由正方形的性質(zhì)得到,求得,,得到,根據(jù)全等三角形的性質(zhì)得到,故正確;,推出,故正確;得到四邊形的面積正方形的面積,四邊形的面積保持不變;故正確;根據(jù)平行線的性質(zhì)得到

,求得,得到,于是得到,故正確.

解:過OGH,

四邊形是正方形,

,,

O是對角線BD的中點,

,,

,,

,

四邊形是正方形,

,

,

中,

,

,故正確;,

,

,故正確;

,

四邊形的面積正方形的面積,

四邊形的面積保持不變;故正確;

,

,

,

,

,

,故正確;

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1 xx 2y 2 xy yx2 x2 y x 2y

2 已知:,求的值。

3)化簡并求值:(2a+b2﹣(2ab)(a+b)﹣2a2b)(a+2b),其中a=,b=-2

4)已知的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組的解滿足為非正數(shù),為負數(shù).

1)求的取值范圍

2)在(1)的條件下,若不等式的解為,求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在今年2月底以每袋23元的成本價收購一批農(nóng)產(chǎn)品準備向外銷售,當此農(nóng)產(chǎn)品售價為每袋36元時,3月份銷售125袋,4、5月份該農(nóng)產(chǎn)品十分暢銷,銷售量持續(xù)走高.在售價不變的基礎(chǔ)上,5月份的銷售量達到180.設(shè)4、5這兩個月銷售量的月平均增長率不變.

1)求45這兩個月銷售量的月平均增長率;

26月份起,該商店采用降價促銷的方式回饋顧客,經(jīng)調(diào)查發(fā)現(xiàn),該農(nóng)產(chǎn)品每降價1/袋,銷量就增加4袋,當農(nóng)產(chǎn)品每袋降價多少元時,該商店6月份獲利1920元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,我國海關(guān)總署嚴厲打擊洋垃圾違法行動,堅決把洋垃圾拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.

(1)求B點到直線CA的距離;

(2)執(zhí)法船從AD航行了多少海里?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA,EC.

(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;

(2)如圖2,若點P在線段AB的中點,連接AC,判斷ACE的形狀,并說明理由;

(3)如圖3,若點P在線段AB上,連接AC,當EP平分AEC時,設(shè)AB=a,BP=b,求a:b及AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的點和點分別表示010,點是線段上一動點.沿以每秒2個單位的速度往返運動1次,是線段的中點,設(shè)點運動時間為秒(不超過10秒).若點在運動過程中,當時,則運動時間的值為(

A.秒或B.秒或秒或

C.3秒或7D.3秒或7秒或

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段PQ1,點P1是線段PQ的中點,點P2是線段P1Q的中點,點P3是線段P2Q的中點..以此類推,點pn是線段pn1Q的中點.

1)線段P3Q的長為   ;

2)線段pnQ的長為   ;

3)求PP1+P1P2+P2P3+…+P9P10的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

同步練習(xí)冊答案