【題目】菱形不具備的性質(zhì)是( 。

A.對(duì)角線一定相等B.對(duì)角線互相垂直

C.是軸對(duì)稱圖形D.是中心對(duì)稱圖形

【答案】A

【解析】

根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;④菱形是軸對(duì)稱圖形,它有2條對(duì)稱軸,分別是兩條對(duì)角線所在直線,即可判斷.

根據(jù)菱形的性質(zhì)可知:

菱形的對(duì)角線互相垂直平分,故B正確;

菱形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故C,D正確;

菱形不具備對(duì)角線一定相等,故A錯(cuò)誤;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x﹣1|+(x+y+2)2=0,則x2+y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=110.32°,用度、分、秒表示為∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一根長(zhǎng)為100cm的木棍鋸成兩段,使其中一段的長(zhǎng)比另一段的2倍少5cm,則鋸出的木棍不可能是( 。

A. 65cm B. 35cm C. 65cm35cm D. 70cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,
化簡(jiǎn):|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a2=9,那么a等于(
A.3
B.﹣3
C.9
D.±3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.

(1)求證:BE=CE;

(2)若BD=2,BE=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°,AB=AC,分別過B、C兩點(diǎn)作過點(diǎn)A的直線l的垂線,垂足為D、E;

1)如圖1,當(dāng)D、E兩點(diǎn)在直線BC的同側(cè)時(shí),猜想,BDCE、DE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3)如圖3,∠BAC=90°AB=25,AC=35.點(diǎn)PB點(diǎn)出發(fā)沿B→A→C路徑向終點(diǎn)C運(yùn)動(dòng);點(diǎn)QC點(diǎn)出發(fā)沿C→A→B路徑向終點(diǎn)B運(yùn)動(dòng).點(diǎn)PQ分別以每秒23個(gè)單位的速度同時(shí)開始運(yùn)動(dòng),只要有一點(diǎn)到達(dá)相應(yīng)的終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng);在運(yùn)動(dòng)過程中,分別過PQPF⊥lF,QG⊥lG.問:點(diǎn)P運(yùn)動(dòng)多少秒時(shí),△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C6,若點(diǎn)P(11,m)在第6段拋物線C6上,則m= .

查看答案和解析>>

同步練習(xí)冊(cè)答案