【題目】如圖,把一個(gè)長(zhǎng)方形的紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)銳角為60°的菱形,剪口與折痕所成的角a的度數(shù)應(yīng)為

【答案】30°或60°
【解析】解:∵四邊形ABCD是菱形, ∴∠ABD= ∠ABC,∠BAC= ∠BAD,AD∥BC,
∵∠BAC=60°,
∴∠BAD=180°﹣∠ABC=180°﹣60°=120°,
∴∠ABD=30°,∠BAC=60°.
∴剪口與折痕所成的角a的度數(shù)應(yīng)為30°或60°.
所以答案是30°或60°.

【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y+3和2x-1成正比例,且x=2時(shí),y=1。

(1)寫出y與x的函數(shù)解析式。

(2)當(dāng)0≤x≤3 時(shí),y的最大值和最小值分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)三角形的兩條邊對(duì)應(yīng)相等,夾角互補(bǔ),那么這兩個(gè)三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個(gè)三角形就是互補(bǔ)三角形.

(1)圖1中的△ABC的BC邊上有一點(diǎn)D,線段AD將△ABC分成兩個(gè)互補(bǔ)三角形,則點(diǎn)D在BC邊的處.
(2)證明:圖2中的△ABC分割成兩個(gè)互補(bǔ)三角形面積相等;
(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI,已知三個(gè)正方形面積分別是17、13、10.則圖3中六邊形DEFGHI的面積為 . (提示:可先利用圖4求出△ABC的面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,點(diǎn)P的邊OB上的一點(diǎn)

1過點(diǎn)POB的垂線,交OA于點(diǎn)C;過點(diǎn)POA的垂線,垂足為H;

2線段PH的長(zhǎng)度是點(diǎn)P到直線__________的距離

3線段__________的長(zhǎng)度是點(diǎn)C到直線OB的距離;

4線段PC、PHOC這三條線段大小關(guān)系是__________“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)單項(xiàng)式﹣2x3ym5xn+1y的差是一個(gè)單項(xiàng)式,求的值;

(2)化簡(jiǎn)求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算: +(π﹣1)0﹣( 1;
(2)化簡(jiǎn):(m+2)(m﹣2)﹣(2﹣m)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC②AB=CD,AD=BC③AO=CO,BO=DO;④AB∥CDAD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖甲是任意一個(gè)直角三角形ABC,它的兩條直角邊的長(zhǎng)分別為ab,斜邊長(zhǎng)為c.如圖乙、丙那樣分別取四個(gè)與直角三角形ABC全等的三角形,放在邊長(zhǎng)為ab的正方形內(nèi).

(1)圖乙、圖丙中①②③都是正方形.由圖可知:①是以________為邊長(zhǎng)的正方形,②是以________為邊長(zhǎng)的正方形,③是以________為邊長(zhǎng)的正方形;

(2)圖乙中①的面積為________,②的面積為________,圖丙中③的面積為________

(3)圖乙中①②面積之和為__________;

(4)圖乙中①②的面積之和與圖丙中正方形③的面積有什么關(guān)系?為什么?由此你能得到關(guān)于直角三角形三邊長(zhǎng)的關(guān)系嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案