【題目】對任意一個四位數(shù)n,如果千位與十位上的數(shù)字之和為9,百位與個位上的數(shù)字之和也為9,則稱n極數(shù),記為n= 其中,且x、y為整數(shù)

請任意寫出兩個極數(shù)

猜想任意一個極數(shù)是否是99的倍數(shù),請說明理由;

如果一個正整數(shù)a是另一個正整數(shù)b的平方,則稱正整數(shù)a是完全平方數(shù),若四位數(shù)m極數(shù),記寫出三個滿足是完全平方數(shù)的只需直接寫出結(jié)果

【答案】12376;任意一個極數(shù)都是99的倍數(shù),理由見解析;(3可以為1188,2673,4752,7425任取三個即可

【解析】

1)根據(jù)“極數(shù)”的定義,任意寫出兩個“極數(shù)”即可;

由“極數(shù)”的定義可得出,進(jìn)而可得出任意一個“極數(shù)”都是99的倍數(shù);

可得出,由為完全平方數(shù),可得出,,,解之可得出x,y的值,進(jìn)而可得出m的值,任取其中的三個即可得出結(jié)論.

,2376

任意一個極數(shù)都是99的倍數(shù),理由如下:

,

任意一個極數(shù)都是99的倍數(shù).

四位數(shù)m極數(shù),

是完全平方數(shù),

,,,,

,,,,

可以為11882673,4752任取三個即可

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為 2 的正方形 ABCD 關(guān)于 y 軸對稱,邊 AD x 軸上,點(diǎn) B 在第四象限,直線 BD與反比例函數(shù) y=的圖象交于 BE 兩點(diǎn).

1)求反比例函數(shù)的解析式;

2)求點(diǎn) E 的坐標(biāo)

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,函數(shù)yy=﹣kx+3的大致圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB:BC=3:5,點(diǎn)E是對角線BD上一動點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時,CN:BN的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.

(1)求兩個路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,進(jìn)價是元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是元時,銷售量是件,而銷售單價每漲元,就會少售出件玩具.

1)不妨設(shè)該種品牌玩具的銷售單價為,請你分別用的代數(shù)式來表示銷售量件和銷售該品牌玩具獲得利潤元,并把結(jié)果填寫在表格中:

2)在問條件下,若商場獲得了元銷售利潤,求該玩具銷售單價應(yīng)定為多少元.

3)在問條件下,求商場銷售該品牌玩具獲得的最大利潤是多少?此時定價多少元?

銷售單價(元)

銷售量(件)

銷售玩具獲得利潤(元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,P點(diǎn)為半徑OA上異于O點(diǎn)和A點(diǎn)的一個點(diǎn),過P點(diǎn)作與直徑AB垂直的弦CD,連接AD,作BEAB,OEADBEE點(diǎn),連接AE、DE、AECDF點(diǎn).

(1)求證:DE為⊙O切線;

(2)若⊙O的半徑為3,sinADP=,求AD;

(3)請猜想PFFD的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(0,4),(﹣30),EAB的中點(diǎn),EFAOOB于點(diǎn)F,AFEO交于點(diǎn)P,則EP的長為_____

查看答案和解析>>

同步練習(xí)冊答案